1,488 research outputs found
Quantum limits in interferometric measurements
Quantum noise limits the sensitivity of interferometric measurements. It is
generally admitted that it leads to an ultimate sensitivity, the ``standard
quantum limit''. Using a semi-classical analysis of quantum noise, we show that
a judicious use of squeezed states allows one in principle to push the
sensitivity beyond this limit. This general method could be applied to large
scale interferometers designed for gravitational wave detection.Comment: 4 page
A high accuracy method for the simulation of non-ideal optical cavities
We present an algorithm able to represent with a high accuracy any kind of stable cavity, even when many static or dynamical defects are present, like misalignments, curvature errors, surface irregularities, substrate inhomogeneities... We first present the theory, giving ideas on its validity domain, and a discussion of its accuracy in terms of a RMS phase error, which is found to be negligible compared to the phase noise due to roughness of optical surfaces. Then we show that the well-known features of ideal resonant cavities are found by the algorithm with a good accuracy. This tool can help for designing laser cavities, mode cleaners, or passive Fabry-Perot standards ; as an example, some results are presented concerning the design of a very long cavity planned for interferometric purposes
Network sensitivity to geographical configuration
Gravitational wave astronomy will require the coordinated analysis of data
from the global network of gravitational wave observatories. Questions of how
to optimally configure the global network arise in this context. We have
elsewhere proposed a formalism which is employed here to compare different
configurations of the network, using both the coincident network analysis
method and the coherent network analysis method. We have constructed a network
model to compute a figure-of-merit based on the detection rate for a population
of standard-candle binary inspirals. We find that this measure of network
quality is very sensitive to the geographic location of component detectors
under a coincident network analysis, but comparatively insensitive under a
coherent network analysis.Comment: 7 pages, 4 figures, accepted for proceedings of the 4th Edoardo
Amaldi conference, incorporated referees' suggestions and corrected diagra
Quantum Limits in Space-Time Measurements
Quantum fluctuations impose fundamental limits on measurement and space-time
probing. Although using optimised probe fields can allow to push sensitivity in
a position measurement beyond the "standard quantum limit", quantum
fluctuations of the probe field still result in limitations which are
determined by irreducible dissipation mechanisms. Fluctuation-dissipation
relations in vacuum characterise the mechanical effects of radiation pressure
vacuum fluctuations, which lead to an ultimate quantum noise for positions. For
macroscopic reflectors, the quantum noise on positions is dominated by
gravitational vacuum fluctuations, and takes a universal form deduced from
quantum fluctuations of space-time curvatures in vacuum. These can be
considered as ultimate space-time fluctuations, fixing ultimate quantum limits
in space-time measurements.Comment: 11 pages, to appear in Quantum and Semiclassical Optic
A note on light velocity anisotropy
It is proved that in experiments on or near the Earth, no anisotropy in the
one-way velocity of light may be detected. The very accurate experiments which
have been performed to detect such an effect are to be considered significant
tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte
Reference frames and rigid motions in relativity: Applications
The concept of rigid reference frame and of constricted spatial metric, given
in the previous work [\emph{Class. Quantum Grav.} {\bf 21}, 3067,(2004)] are
here applied to some specific space-times: In particular, the rigid rotating
disc with constant angular velocity in Minkowski space-time is analyzed, a new
approach to the Ehrenfest paradox is given as well as a new explanation of the
Sagnac effect. Finally the anisotropy of the speed of light and its measurable
consequences in a reference frame co-moving with the Earth are discussed.Comment: 13 pages, 1 figur
Is it possible to detect gravitational waves with atom interferometers?
We investigate the possibility to use atom interferometers to detect
gravitational waves. We discuss the interaction of gravitational waves with an
atom interferometer and analyze possible schemes
- …