2 research outputs found

    Gravity and Matter in Causal Set Theory

    Full text link
    The goal of this paper is to propose an approach to the formulation of dynamics for causal sets and coupled matter fields. We start from the continuum version of the action for a Klein-Gordon field coupled to gravity, and rewrite it first using quantities that have a direct correspondent in the case of a causal set, namely volumes, causal relations, and timelike lengths, as variables to describe the geometry. In this step, the local Lagrangian density L(f;x)L(f;x) for a set of fields ff is recast into a quasilocal expression L0(f;p,q)L_0(f;p,q) that depends on pairs of causally related points p≺qp \prec q and is a function of the values of ff in the Alexandrov set defined by those points, and whose limit as pp and qq approach a common point xx is L(f;x)L(f;x). We then describe how to discretize L0(f;p,q)L_0(f;p,q), and use it to define a discrete action.Comment: 13 pages, no figures; In version 2, friendlier results than in version 1 are obtained following much shorter derivation

    Linear Extensions and Comparable Pairs in Partial Orders

    Get PDF
    We study the number of linear extensions of a partial order with a given proportion of comparable pairs of elements, and estimate the maximum and minimum possible numbers. We also show that a random interval partial order on nn elements has close to a third of the pairs comparable with high probability, and the number of linear extensions is n! 2−Θ(n)n! \, 2^{-\Theta(n)} with high probability
    corecore