2,491 research outputs found

    Search for R-parity-violating supersymmetric particles in multi-jet final states produced in p -p collisions at s √ =13 TeV using the ATLAS detector at the LHC

    Get PDF
    Results of a search for gluino pair production with subsequent R-parity-violating decays to quarks are presented. This search uses 36.1 fb −1 of data collected by the ATLAS detector in proton-proton collisions with a center-of-mass energy of s √ =13 TeV at the LHC. The analysis is performed using requirements on the number of jets and the number of jets tagged as containing a b -hadron as well as a topological observable formed by the scalar sum of masses of large-radius jets in the event. No significant excess above the expected Standard Model background is observed. Limits are set on the production of gluinos in models with the R-parity-violating decays of either the gluino itself (direct decay) or the neutralino produced in the R-parity-conserving gluino decay (cascade decay). In the gluino cascade decay model, gluinos with masses below 1850 GeV are excluded for 1000 GeV neutralino mass. For the gluino direct decay model, the 95% confidence level upper limit on the cross section times branching ratio varies between 0.80 fb at m g ~ = 900 GeV and 0.011 fb at m g ~ = 1800 GeV

    Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics

    Full text link
    A future Higgs Factory will provide improved precision on measurements of Higgs couplings beyond those obtained by the LHC, and will enable a broad range of investigations across the fields of fundamental physics, including the mechanism of electroweak symmetry breaking, the origin of the masses and mixing of fundamental particles, the predominance of matter over antimatter, and the nature of dark matter. Future colliders will measure Higgs couplings to a few per cent, giving a window to beyond the Standard Model (BSM) physics in the 1-10 TeV range. In addition, they will make precise measurements of the Higgs width, and characterize the Higgs self-coupling. This report details the work of the EF01 and EF02 working groups for the Snowmass 2021 study.Comment: 44 pages, 40 figures, Report of the Topical Group on Higgs Physics for Snowmass 2021. The first four authors are the Conveners, with Contributions from the other author

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×1034^{34} cm−2^{-2}s−1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker

    Get PDF

    Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons

    Get PDF

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 ÎŒm) to thinned sensors (about 240 ÎŒm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 ÎŒm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Search for resonances in events with photon and jet final states in proton-proton collisions at s = 13 TeV

    Get PDF
    A search for resonances in events with the γ+jet final state has been performed using proton-proton collision data collected at s = 13 TeV by the CMS experiment at the LHC. The total data analyzed correspond to an integrated luminosity of 138 fb−1. Models of excited quarks and quantum black holes are considered. Using a wide-jet reconstruction for the candidate jet, the γ+jet invariant mass spectrum measured in data is examined for the presence of resonances over the standard model continuum background. The background is estimated by fitting this mass distribution with a functional form. The data exhibit no statistically significant deviations from the expected standard model background. Exclusion limits at 95% confidence level on the resonance mass and other parameters are set. Excited light-flavor quarks (excited bottom quarks) are excluded up to a mass of 6.0 (3.8) TeV. Quantum black hole production is excluded for masses up to 7.5 (5.2) TeV in the Arkani-Hamed-Dimopoulos-Dvali (Randall-Sundrum) model. These lower mass bounds are the most stringent to date among those obtained in the γ+jet final state

    Observation of B0 → ψ(2S)K0s π+π− and B0s → ψ(2S)K0s decays

    Get PDF
    Using a data sample of root s = 13 TeV protonproton collisions collected by the CMS experiment at the LHC in 2017 and 2018 with an integrated luminosity of 103 fb(-1), the B-s(0) -> psi(2S)K-S(0) and B-0 -> psi(2S)K-S(0) pi(+) pi(-) decays are observed with significances exceeding 5 standard deviations. The resulting branching fraction ratios, measured for the first time, correspond to B(B-s(0) -> psi(2S)K-S(0))/B(B-0 Zeta -> psi(2S)K-S(0)) = (3.33 +/- 0.69(stat) +/- 0.11 (syst) +/- 0.34 (f(s)/f(d))) x 10(-2) and B(B-0 -> psi(2S)K-S(0) pi(+) pi(-))/B(B-0 -> psi(2S)K-S(0)) = 0.480 +/- 0.013 (stat) +/- 0.032 (syst), where the last uncertainty in the first ratio is related to the uncertainty in the ratio of production cross sections of B-s(0) and B-0 mesons, f(s)/f(d)

    Search for light long-lived particles decaying to displaced jets in proton-proton collisions at √s = 13.6 TeV

    Get PDF
    A search for light long-lived particles (LLPs) decaying to displaced jets is presented, using a data sample of proton–proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb−1^{−1}, collected with the CMS detector at the CERN LHC in 2022. Novel trigger, reconstruction, and machine-learning techniques were developed for and employed in this search. After all selections, the observations are consistent with the background predictions. Limits are presented on the branching fraction of the Higgs boson to LLPs that subsequently decay to quark pairs or tau lepton pairs. An improvement by up to a factor of 10 is achieved over previous limits for models with LLP masses smaller than 60 GeV and proper decay lengths smaller than 1 m. The first constraints are placed on the fraternal twin Higgs (FTH) and folded supersymmetry (FSUSY) models, where the lower bounds on the top quark partner mass reach up to 350 GeV for the FTH model and 250 GeV for the FSUSY model
    • 

    corecore