42 research outputs found
Sperm quality, semen production, and fertility in young Norwegian Red bulls
Ved bruk av genomisk seleksjon i storfeavlen blir eliteokser selektert basert på deres estimerte genomiske avlsverdier i stedet for ved avkomsgransking. Oksene er derfor yngre når de blir tatt i bruk i sædproduksjon enn tidligere. Hovedmålet med denne avhandlingen var å identifisere nye indikatorer for når sædproduksjonen er i gang hos unge Norsk Rødt Fe okser, og som kan måles i løpet av testperioden og gi informasjon om oksenes potensielle fremtidige sædproduksjon, aksept for semin-stasjonen samt fruktbarhet i felt. I Artikkel 1 ble flowcytometri og Computer-Aided Sperm Analysis brukt til å analysere ulike spermiekvalitetsparametere i ejakulater fra 65 okser i alderen 9-13 måneder. Sædprøver ble utsatt for stresstester og kryokonservering. Oksene ble klassifisert i tre grupper med ulik respons på spermie-stresstester. Ved å benytte spermie-stresstester, kryokonservering og morfologianalyse tidlig i testperioden, kan en få verdifull innsikt i når oksene er tilstrekkelig utviklet for sædproduksjon. Med denne tilnærmingen vil en kunne ta i bruk yngre okser i sæduttak og -produksjon, og dermed bidra til redusert generasjonsintervall og økt genetisk framgang. I Artikkel 2 ble det fokusert på å undersøke potensialet til insulin-like factor 3 som en biomarkør for å predikere når sædproduksjonen starter hos unge Norsk Rødt Fe okser. Det ble tatt blodprøver og samtidig utført målinger av skrotumomkrets på 142 okser på fire tidspunkt mellom 2 og 12 måneders alder. Studien hadde som mål å belyse sammenhenger mellom nivået av insulin-like factor 3, skrotumomkrets og ulike sædparametere. Det ble funnet en positiv korrelasjon mellom insulin-like factor 3 og skrotumomkretsen, men det ble ikke funnet signifikante sammenhenger mellom skrotumomkretsen og sædparametere. På grunn av betydelige individuelle variasjoner i den undersøkte norske okse-populasjonen, er insulin-like factor 3 foreløpig ikke en egnet biomarkør til å kunne predikere når sædproduksjonen starter hos denne rasen. I Artikkel 3 presenteres en automatisert metode for å måle skrotumomkretsen hos Norsk Rødt Fe okser ved hjelp av 3D-bilder og konvolusjonelle nevrale nettverk. 3D-bilder ble tatt samtidig som manuelle målinger av skrotumomkretsen ble utført på oksene, noe som ble gjentatt ved ulike aldere. Studien sammenlignet de manuelle og automatiserte målingene oppnådd ved semantisk segmentering. Det ble vist at de automatiserte målingene av skrotumomkretsen ga tilsvarende resultater som de manuelle målingene. Gjennomsnittlig prediksjonsfeil varierte med oksenes alder og kvaliteten på 3D-bildene. Denne nye målemetoden har potensiale til å kunne implementeres i breeding soundness evaluation ved testings- og seminstasjoner, og kan gi en rask og effektiv vurdering av skrotumomkretsen.Abstract. With the application of genomic selection in dairy cattle breeding, the choice of elite sires is based on their estimated genomic breeding values instead of progeny testing. Consequently, bulls are introduced into semen production at a younger age than previously. The main aim of this thesis was to identify novel early indicators of sperm production onset and maturity status of young Norwegian Red bulls during their performance test period, to provide insight into their potential future semen production, acceptance for the AI station, and field fertility. In Paper 1, flow cytometry and computer-aided sperm analysis were used to analyse various sperm quality parameters in ejaculates collected from 65 bulls aged 9-13 months. Semen samples were subjected to stress tests and cryopreservation. The bulls were classified into three clusters with different responses to sperm stress tests. By incorporating sperm stress tests, cryopreservation, and early morphology analysis, valuable insights into the maturity of bulls for sperm production could be gained. This approach would allow for the integration of younger bulls into semen collection, facilitating reduced generation interval and increased genetic gain. The focus in Paper 2 is on investigating the potential of insulin-like factor 3 as a biomarker for predicting the onset of sperm production in young Norwegian Red bulls. Blood samples and scrotal circumference measurements were collected from 142 bulls at four time-points between 2 and 12 months of age. The aim of the study was to determine the relationship between insulin-like factor 3, scrotal circumference, and semen characteristics. While a positive correlation was found between insulin-like factor 3 and scrotal circumference, no significant correlations were observed between scrotal circumference and semen characteristics. Due to the substantial interindividual variability in the Norwegian Red bull population, insulin-like factor 3 is currently not a reliable biomarker for predicting the onset of sperm production in this breed. In Paper 3 an automated method for measuring scrotal circumference of Norwegian Red bulls using 3D images and convolutional neural networks is presented. 3D images were captured, and manual scrotal circumference measurements made of bulls at different ages. The study compared the manual and automated measurements obtained through semantic segmentation. The results showed that the automated scrotal circumference measurements were similar to manual measurements. Mean prediction error varied depending on bull age and image quality. This novel measurement method has the potential to be implemented in bull breeding soundness evaluations at performance test stations and semen collection centers, providing a fast and efficient approach for assessing scrotal circumference.publishedVersio
Novel interpretation of sperm stress test and morphology for maturity assessment of young Norwegian Red bulls
The use of genomic selection significantly reduces the age of dairy bulls entering semen pro-duction compared to progeny testing. The study aimed to identify early indicators that could be used for screening bulls during their performance testing period and could give us insight into their future semen production performance, acceptance for the AI station, and prediction of their future fertility. The study population consisted of 142 young Norwegian Red bulls enrolled at the performance test station, followed until we received semen production data, semen doses, and, subsequently, non-return rates (NR56) from the AI station. A range of semen quality parameters were measured with computer-assisted sperm analysis and flow cytometry from ejaculates collected from 65 bulls (9-13 months). The population morphometry of normal spermatozoa was examined, showing that Norwegian Red bulls at 10 months of age have homogenous sperm morphometry. Norwegian Red bulls could be separated into 3 clusters according to their sperm's reaction patterns to stress test and cryopreservation. Results of semi-automated morphology assessment of young Norwegian Red bulls showed that 42% of bulls rejected for the AI station and 18% of bulls accepted had ejaculates with abnormal morphology scores. For the youngest age group at 10 months, the mean (SD) proportion of spermatozoa with normal morphology was 77.5% (10.6). Using novel interpretation of sperm stress test combined with sperm morphology analysis and consecutive cryopreservation at a young age allowed identification of the candi-date's sperm quality status. This could help breeding companies introduce young bulls earlier to the AI stations
Associations between insulin-like factor 3, scrotal circumference and semen characteristics in young Norwegian Red bulls
With the integration of genomic selection in the cattle artificial insemination (AI) industry, bulls are selected for their semen production capacity and fertility at a younger age than previously. Norwegian Red bull calves selected as candidates to become future Al bulls based on their genomic breeding value are kept in a performance testing station from around the age of 3-12 months, allowing for sample col-lection and analysis of different parameters during their pre-and peripubertal period. Insulin-like factor 3 (INSL3) is a small peptide hormone specifically secreted by the mature Leydig cells of the testes. In the foetus, it induces the first phase of testicular descent and is considered to reflect Leydig cell development during puberty; it could therefore be an interesting early indicator of future semen production capacity. The main objective of our study was to evaluate the relationship between INSL3, scrotal circumference (SC), and semen characteristics. This is the first time INSL3 was measured in the Norwegian Red popula-tion. We collected blood samples for analysis of INSL3 from 142 Norwegian Red bulls at the performance testing station and measured their SC on the same day. Altogether, measurements were made at four time points: upon arrival at the performance testing station (quarantine (Q.): 2-5 months) and later at approximately 6, 9 and 12 months of age. Information on season and place of birth were made available from the database of the breeding company Geno, together with data on semen characteristics from the test station and the Al station. The median SCs for age groups Q 6, 9, and 12 were 15, 21.5, 29, and 34 cm, respectively. INSL3 was shown to be positively correlated with SC (R = 0.4) but not with any of the semen characteristics. Similarly, we found no correlation between SC and sperm characteristics from data on ejaculates analysed at the performance testing station and AI station. The mean sperm volume for the 31 selected bulls with at least 10 ejaculates produced in the AI station increased from 2.3 ml at the performance testing station to 6.4 ml at the AI station. The corresponding increase in mean sperm concentration was from 497 million/ml to 1 049 million/ml. We conclude that INSL3 exhibits high inter-individual variability in the Norwegian Red bull population, which cannot be explained by the parameters measured in this study. At present, INSL3 cannot be used as a biomarker of sperm production in this breed.(c) 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Deep learning–based automated measurements of the scrotal circumference of Norwegian Red bulls from 3D images
The main aim of this study was to create an automated method for the measurement of the scrotal circumference (SC) of Norwegian Red bulls using 3D images of the scrotum based on convolutional neural networks. The study population was bull calves recruited for performance testing before the selection of bulls for semen production in the breeding program. Bulls were measured at four different time points: upon arrival in quarantine (Q) and thereafter at approximately 6, 9 and 12 months of age. Both 3D images and manual SC measurements were performed at all time points. In our approach, SC could be calculated without direct contact with the bull, using only 3D images and a simple, user–friendly application into which mentioned images are uploaded. The results show that SC measurements obtained using semantic segmentation are comparable with manual measurements. The mean prediction error was significantly different between age groups Q, 6, 9 and 12, and it was -3.07 cm, -3.02 cm, -1.79 cm and -1.11 cm, respectively. The results show a significant difference in the measurement error of the SC based on the quality of the images. Images were categorised into three quality groups. For good prediction accuracy, we recommend capturing 3D images of quality 2 – full circle from individuals older than 6 months.publishedVersio
Novel interpretation of sperm stress test and morphology for maturity assessment of young Norwegian Red bulls
publishedVersio
Associations between insulin-like factor 3, scrotal circumference and semen characteristics in young Norwegian Red bulls
publishedVersio
Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies
In order to identify the dominant nuclear outflow mechanisms in Active
Galactic Nuclei, we have undertaken deep, high resolution observations of two
compact radio sources (PKS 1549-79 and PKS 1345+12) with the Advanced Camera
for Surveys (ACS) aboard the Hubble Space Telescope. Not only are these targets
known to have powerful emission line outflows, but they also contain all the
potential drivers for the outflows: relativistic jets, quasar nuclei and
starbursts. ACS allows the compact nature (<0.15") of these radio sources to be
optically resolved for the first time. Through comparison with existing radio
maps we have seen consistency in the nuclear position angles of both the
optical emission line and radio data. There is no evidence for bi-conical
emission line features on the large-scale and there is a divergance in the
relative position angles of the optical and radio structure. This enables us to
exclude starburst driven outflows. However, we are unable to clearly
distinguish between radiative AGN wind driven outflows and outflows powered by
relativistic radio jets. The small scale bi-conical features, indicative of
such mechanisms could be below the resolution limit of ACS, especially if
aligned close to the line of sight. In addition, there may be offsets between
the radio and optical nuclei induced by heavy dust obscuration, nebular
continuum or scattered light from the AGN.Comment: 9 pages, 8 figures, emulateapj, ApJ Accepte
Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects
addresses: Peninsula Medical School, University of Exeter, Heavitree Road, Exeter EX1 2LU, UK. [email protected]: PMCID: PMC3334661types: Journal Article; Research Support, Non-U.S. Gov'tRheumatoid arthritis (RA) is considered a T cell driven autoimmune disease, therefore, the ability of B cell depleting biologics, e.g., anti-CD20 antibodies, to alleviate RA is unclear. This study examined the proportions of IL-17-secreting lymphocytes in the blood of healthy subjects and RA patients and determined if Th17 cells belong to a CD20+ subset of T cells
Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives
To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue
NA62 Liquid Krypton Purity Monitor
A system for determining the purity of liquid krypton employed in the NA62 rare kaon decay experiment at CERN was developed based on the use of a time projection chamber. The attenuation of drifting ionization electrons from absorption of 511 keV gamma rays in liquid krypton was measured to estimate the purity. The setup was tested with krypton purified from commercial sources.A system for determining the purity of liquid krypton employed in the NA62 rare kaon decay experiment at CERN was developed based on the use of a time projection chamber. The attenuation of drifting ionization electrons from absorption of 511 keV gamma rays in liquid krypton was measured to estimate the purity. The setup was tested with krypton purified from commercial sources