313 research outputs found

    Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    Get PDF
    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying" - a mechanism that relies on a specific network motif - has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair - a "resonance pair" - plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.Comment: 41 pages, 12 figures, and 11 supplementary figure

    Generalized time-frequency coherency for assessing neural interactions in electrophysiological recordings

    Get PDF
    Time-frequency coherence has been widely used to quantify statistical dependencies in bivariate data and has proven to be vital for the study of neural interactions in electrophysiological recordings. Conventional methods establish time-frequency coherence by smoothing the cross and power spectra using identical smoothing procedures. Smoothing entails a trade-off between time-frequency resolution and statistical consistency and is critical for detecting instantaneous coherence in single-trial data. Here, we propose a generalized method to estimate time-frequency coherency by using different smoothing procedures for the cross spectra versus power spectra. This novel method has an improved trade-off between time resolution and statistical consistency compared to conventional methods, as verified by two simulated data sets. The methods are then applied to single-trial surface encephalography recorded from human subjects for comparative purposes. Our approach extracted robust alpha- and gamma-band synchronization over the visual cortex that was not detected by conventional methods, demonstrating the efficacy of this method

    Hierarchical and Nonlinear Dynamics in Prefrontal Cortex Regulate the Precision of Perceptual Beliefs

    Get PDF
    Actions are shaped not only by the content of our percepts but also by our confidence in them. To study the cortical representation of perceptual precision in decision making, we acquired functional imaging data whilst participants performed two vibrotactile forced-choice discrimination tasks: a fast-slow judgment, and a same-different judgment. The first task requires a comparison of the perceived vibrotactile frequencies to decide which one is faster. However, the second task requires that the estimated difference between those frequencies is weighed against the precision of each percept—if both stimuli are very precisely perceived, then any slight difference is more likely to be identified than if the percepts are uncertain. We additionally presented either pure sinusoidal or temporally degraded “noisy” stimuli, whose frequency/period differed slightly from cycle to cycle. In this way, we were able to manipulate the perceptual precision. We report a constellation of cortical regions in the rostral prefrontal cortex (PFC), dorsolateral PFC (DLPFC) and superior frontal gyrus (SFG) associated with the perception of stimulus difference, the presence of stimulus noise and the interaction between these factors. Dynamic causal modeling (DCM) of these data suggested a nonlinear, hierarchical model, whereby activity in the rostral PFC (evoked by the presence of stimulus noise) mutually interacts with activity in the DLPFC (evoked by stimulus differences). This model of effective connectivity outperformed competing models with serial and parallel interactions, hence providing a unique insight into the hierarchical architecture underlying the representation and appraisal of perceptual belief and precision in the PFC

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure

    Maximized directed information transfer in critical neuronal networks

    Get PDF
    Critical dynamics in complex systems emerge at the transition from random to ordered dynamics and are characterized by power-law distributions of spatial and temporal properties of system events. The occurrence of critical dynamics in neuronal networks is increasingly supported by multielectrode array recordings of spontaneous activity in organotypic cortical slice cultures [1]. System events in these neuronal networks are typically defined as activations of neuronal ensembles, or “neuronal avalanches”. Interestingly, studies associate critical neuronal network avalanche dynamics with optimized information transfer [1, 2]. However, studies have not previously examined the directed nature of information transfer in these networks. Here, we present three novel transfer-entropy [3] based measures of directed information transfer between neuronal avalanches. Our measures compute the amount of predictive information present in avalanches properties (avalanche size, avalanche duration and inter-avalanche period) of the source region about avalanche properties of the destination region and are suitable for detecting information transfer at multiple spatial scales, from individual neurons to neuronal ensembles. We apply these measures to compute directed information transfer in large, sparse, modular networks of leaky integrate-and-fire neurons with spike timing-dependent synaptic plasticity and axonal conduction delays. We characterize dynamics in our networks by distributions of neuronal avalanches and assess these distributions for power-law scaling. We compute directed information transfer between two halves of eac

    Editorial: State-dependent brain computation

    Get PDF
    International audienceThe brain is a self-organizing system, which has evolved such that neuronal responses and related behavior are continuously adapted with respect to the external and internal context. This powerful capability is achieved through the modulation of neuronal interactions depending on the history of previously processed information. In particular, the brain updates its connections as it learns successful versus unsuccessful strategies. The resulting connectivity changes, together with stochastic processes (i.e., noise) influence ongoing neuronal dynamics. The role of such state-dependent fluctuations may be one of the fundamental computational properties of the brain, being pervasively present in human behavior and leaving a distinctive fingerprint in neuroscience data. This development is captured by the present Frontiers Research Topic, " State-Dependent Brain Computation

    Cross cultural detection of depression from nonverbal behaviour

    Get PDF
    Millions of people worldwide suffer from depression. Do commonalities exist in their nonverbal behavior that would enable cross-culturally viable screening and assessment of severity? We investigated the generalisability of an approach to detect depression severity cross-culturally using video-recorded clinical interviews from Australia, the USA and Germany. The material varied in type of interview, subtypes of depression and inclusion healthy control subjects, cultural background, and recording environment. The analysis focussed on temporal features of participants' eye gaze and head pose. Several approaches to training and testing within and between datasets were evaluated. The strongest results were found for training across all datasets and testing across datasets using leave-one-subject-out cross-validation. In contrast, generalisability was attenuated when training on only one or two of the three datasets and testing on subjects from the dataset(s) not used in training. These findings highlight the importance of using training data exhibiting the expected range of variabilit