422 research outputs found
Universal four-body states in heavy-light mixtures with positive scattering length
The number of four-body states known to behave universally is small. This
work adds a new class of four-body states to this relatively short list. We
predict the existence of a universal four-body bound state for heavy-light
mixtures consisting of three identical heavy fermions and a fourth
distinguishable lighter particle with mass ratio and
short-range interspecies interaction characterized by a positive s-wave
scattering length. The structural properties of these universal states are
discussed and finite-range effects are analyzed. The bound states can be
experimentally realized and probed utilizing ultracold atom mixtures.Comment: 5 page
Full two-electron calculations of antiproton collisions with molecular hydrogen
Total cross sections for single ionization and excitation of molecular
hydrogen by antiproton impact are presented over a wide range of impact energy
from 1 keV to 6.5 MeV. A nonpertubative time-dependent close-coupling method is
applied to fully treat the correlated dynamics of the electrons. Good agreement
is obtained between the present calculations and experimental measurements of
single-ionization cross sections at high energies, whereas some discrepancies
with the experiment are found around the maximum. The importance of the
molecular geometry and a full two-electron description is demonstrated. The
present findings provide benchmark results which might be useful for the
development of molecular models.Comment: 4 pages, 3 figure
Revised Born-Oppenheimer approach and a multielectron reprojection method for inelastic collisions
The quantum reprojection method within the standard adiabatic
Born-Oppenheimer approach is derived for multielectron collision systems. The
method takes nonvanishing asymptotic nonadiabatic couplings into account and
distinguishes asymptotic currents in molecular state and in atomic state
channels, leading to physically consistent and reliable results. The method is
demonstrated for the example of low-energy inelastic Li+Na collisions, for
which the conventional application of the standard adiabatic Born-Oppenheimer
approach fails and leads to paradoxes such as infinite inelastic cross
sections
Polarization effects in attosecond photoelectron spectroscopy
We study the influence of polarization effects in streaking by combined atto-
and femtosecond pulses. The polarization-induced terms alter the streaking
spectrum. The normal streaking spectrum, which maps to the vector potential of
the femtosecond pulse, is modified by a contribution following the field
instead. We show that polarization effects may lead to an apparent temporal
shift, that needs to be properly accounted for in the analysis. The effect may
be isolated and studied by angle-resolved photoelectron spectroscopy from
oriented polar molecules. We also show that polarization effects will lead to
an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s
state in atomic hydrogen.Comment: 4 pages, 3 figure
Collisions of antiprotons with hydrogen molecular ions
Time-dependent close-coupling calculations of the ionization and excitation
cross section for antiproton collisions with molecular hydrogen ions are
performed in an impact-energy range from 0.5 keV to 10 MeV. The
Born-Oppenheimer and Franck-Condon approximations as well as the impact
parameter method are applied in order to describe the target molecule and the
collision process. It is shown that three perpendicular orientations of the
molecular axis with respect to the trajectory are sufficient to accurately
reproduce the ionization cross section calculated by [Sakimoto, Phys. Rev. A
71, 062704 (2005)] reducing the numerical effort drastically. The
independent-event model is employed to approximate the cross section for double
ionization and H+ production in antiproton collisions with H2.Comment: 12 pages, 5 figures, 4 table
Locally Optimal Control of Quantum Systems with Strong Feedback
For quantum systems with high purity, we find all observables that, when
continuously monitored, maximize the instantaneous reduction in the von Neumann
entropy. This allows us to obtain all locally optimal feedback protocols with
strong feedback, and explicit expressions for the best such protocols for
systems of size N <= 4. We also show that for a qutrit the locally optimal
protocol is the optimal protocol for a given range of control times, and derive
an upper bound on all optimal protocols with strong feedback.Comment: 4 pages, Revtex4. v2: published version (some errors corrected
Clusters under strong VUV pulses: A quantum-classical hybrid-description incorporating plasma effects
The quantum-classical hybrid-description of rare-gas clusters interacting
with intense light pulses which we have developed is described in detail. Much
emphasis is put on the treatment of screening electrons in the cluster which
set the time scale for the evolution of the system and form the link between
electrons strongly bound to ions and quasi-free plasma electrons in the
cluster. As an example we discuss the dynamics of an Ar147 cluster exposed to a
short VUV laser pulse of 20eV photon energy.Comment: 8 pages, 9 figure
Universality of Quantum Gravity Corrections
We show that the existence of a minimum measurable length and the related
Generalized Uncertainty Principle (GUP), predicted by theories of Quantum
Gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity
corrections to various quantum phenomena. We compute such corrections to the
Lamb Shift, the Landau levels and the tunnelling current in a Scanning
Tunnelling Microscope (STM). We show that these corrections can be interpreted
in two ways: (a) either that they are exceedingly small, beyond the reach of
current experiments, or (b) that they predict upper bounds on the quantum
gravity parameter in the GUP, compatible with experiments at the electroweak
scale. Thus, more accurate measurements in the future should either be able to
test these predictions, or further tighten the above bounds and predict an
intermediate length scale, between the electroweak and the Planck scale.Comment: v1: 4 pages, LaTeX; v2: typos corrected, references updated, version
to match published version in Physical Review Letter
Dilute Bose gases interacting via power-law potentials
Neutral atoms interact through a van der Waals potential which asymptotically
falls off as r^{-6}. In ultracold gases, this interaction can be described to a
good approximation by the atom-atom scattering length. However, corrections
arise that depend on the characteristic length of the van der Waals potential.
We parameterize these corrections by analyzing the energies of two- and
few-atom systems under external harmonic confinement, obtained by numerically
and analytically solving the Schrodinger equation. We generalize our results to
particles interacting through a longer-ranged potential which asymptotically
falls off as r^{-4}.Comment: 7 pages, 4 figure
A numerical study of two-photon ionization of helium using the Pyprop framework
Few-photon induced breakup of helium is studied using a newly developed ab
initio numerical framework for solving the six-dimensional time-dependent
Schroedinger equation. We present details of the method and calculate
(generalized) cross sections for the process of two-photon nonsequential
(direct) double ionization at photon energies ranging from 39.4 to 54.4 eV, a
process that has been very much debated in recent years and is not yet fully
understood. In particular, we have studied the convergence property of the
total cross section in the vicinity of the upper threshold (54.4 eV), versus
the pulse duration of the applied laser field. We find that the cross section
exhibits an increasing trend near the threshold, as has also been observed by
others, and show that this rise cannot solely be attributed to an unintended
inclusion of the sequential two-photon double ionization process, caused by the
bandwidth of the applied field.Comment: 7 pages, 3 figure
- …