39 research outputs found
Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification
PURPOSE:
To determine the implications of the use of the Anisotropic Analytical Algorithm(AAA) for the production and dosimetric verification of IMRT plans for treatments of the
prostate, parotid, nasopharynx and lung.
METHODS:
72 IMRT treatment plans produced using the Pencil Beam Convolution (PBC)algorithm were recalculated using the AAA and the dose distributions compared. 24 of the
plans were delivered to inhomogeneous phantoms and verification measurements made using a pinpoint ionisation chamber. The agreement between the AAA and measurement
was determined.
RESULTS:
Small differences were seen in the prostate plans, with the AAA predicting slightly lower minimum PTV doses. In the parotid plans, there were small increases in the lens and
contralateral parotid doses while the nasopharyngeal plans revealed a reduction in the volume of the PTV covered by the 95% isodose (the V95%) when the AAA was used. Large
changes were seen in the lung plans, the AAA predicting reductions in the minimum PTV dose and large reductions in the V95%. The AAA also predicted small increases in the mean
dose to the normal lung and the V20. In the verification measurements, all AAA calculations were within 3% or 3.5mm distance to agreement of the measured doses.
Conclusions: The AAA should be used in preference to the PBC algorithm for treatments involving low density tissue but this may necessitate re-evaluation of plan acceptability
criteria. Improvements to the Multi-Resolution Dose Calculation algorithm used in the inverse planning are required to reduce the convergence error in the presence of lung tissue. There was excellent agreement between the AAA and verification measurements for all sites
Functional image-based radiotherapy planning for non-small cell lung cancer: a simulation study
Background and purpose: To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging (He-3-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC).
Material and methods: Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving >= 20 Gy (V-20), and the other to minimise only the functional lung volume receiving >= 20 Gy (FV20). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V-PTV95/FV20) were compared between anatomical and functional plans using the Wilcoxon signed ranks test.
Results: Compared to anatomical IMRT plans, functional planning reduced FV20 (median 2.7%, range 0.6-3.5%, p = 0.02), and total lung V-20 (median 1.5%, 0.5-2.7%, p = 0.02), with a small reduction in mean functional lung dose (median 0.4 Gy, 0-0.7 Gy, p = 0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p = 0.02).
Conclusions: Statistically significant reductions in FV20, V-20 and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or He-3-MRI. (C) 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 93 (2009) 32-3
Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning
To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging ((3)He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment (3)He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving ⩾20 Gy (V20) were compared with plans that minimised (3)He MRI defined functional lung receiving ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of (3)He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3%; p = 0.04) and 0.2% (range: 0 to 4.1%; p = 0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised (3)He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields
Stability, local structure and electronic properties of borane radicals on the Si(1 0 0)
Deposition of a thin B layer via decomposition of B2H6 on Si (PureB process) produces B-Si junctions which
exhibit unique electronic and optical properties. Here we present the results of our systematic first-principles
study of BHn (n = 0–3) radicals on Si(1 0 0)2 × 1:H surfaces, the initial stage of the PureB process. The calculations
reveal an unexpectedly high stability of BH2 and BH3 radicals on the surface and a plausible atomic
exchange mechanism of surface Si atoms with B atoms from absorbed BHn radicals. The calculations show
strong local structural relaxation and reconstructions, as well as strong chemical bonding between the surface
Si and the BHn radicals. Electronic structure calculations show various defect states in the energy gap of Si
due to the BHn absorption. These results shed light on the initial stages of the complicated PureB process and
also rationalize the unusual electronic, optical and electrical properties of the deposited Si surfaces
Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit
Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity
Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals
Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic determinants associated with changes in glycemia over time might illuminate biological features that precede the development of T2D. Here we conducted a genome-wide association study of longitudinal fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. Fasting glucose change over time was defined as the slope of the line defined by multiple fasting glucose measurements obtained over up to 14 years of observation. We tested for associations of genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age at baseline, sex, and principal components of genetic variation. We found no genome-wide significant association (P < 5 × 10−8) with fasting glucose change over time. Seven loci previously associated with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change over time. Limited power influences unambiguous interpretation, but these da
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe