116 research outputs found

    Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate Membranes. Evidence for Fixed-Site Jumping Transport Mechanism

    No full text
    Facilitated Transport of Small Carbohydrates through Plasticized Cellulose Triacetate Membranes. Evidence for Fixed-Site Jumping Transport Mechanis

    Anionic Saccharides Activate Liposomes Containing Phospholipids Bearing a Boronic Acid for Ca<sup>2+</sup>-Dependent Fusion

    No full text
    Anionic Saccharides Activate Liposomes Containing Phospholipids Bearing a Boronic Acid for Ca2+-Dependent Fusio

    Supramolecular Mitigation of the Cyanine Limit Problem

    No full text
    Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the “cyanine limit” and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newly designed series of cationic, cyanine dyes by cucurbit[7]­uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the “cyanine limit” problem

    Fluorescence Imaging Using Deep-Red Indocyanine Blue, a Complementary Partner for Near-Infrared Indocyanine Green

    No full text
    Indocyanine Blue (ICB) is the deep-red pentamethine analogue of the widely used clinical near-infrared heptamethine cyanine dye Indocyanine Green (ICG). The two fluorophores have the same number of functional groups and molecular charge and vary only by a single vinylene unit in the polymethine chain, which produces a predictable difference in spectral and physicochemical properties. We find that the two dyes can be employed as a complementary pair in diverse types of fundamental and applied fluorescence imaging experiments. A fundamental fluorescence spectroscopy study used ICB and ICG to test a recently proposed Förster Resonance Energy Transfer (FRET) mechanism for enhanced fluorescence brightness in heavy water (D2O). The results support two important corollaries of the proposal: (a) the strategy of using heavy water to increase the brightness of fluorescent dyes for microscopy or imaging is most effective when the dye emission band is above 650 nm, and (b) the magnitude of the heavy water florescence enhancement effect for near-infrared ICG is substantially diminished when the ICG surface is dehydrated due to binding by albumin protein. Two applied fluorescence imaging studies demonstrated how deep-red ICB can be combined with a near-infrared fluorophore for paired agent imaging in the same living subject. One study used dual-channel mouse imaging to visualize increased blood flow in a model of inflamed tissue, and a second mouse tumor imaging study simultaneously visualized the vasculature and cancerous tissue in separate fluorescence channels. The results suggest that ICB and ICG can be incorporated within multicolor fluorescence imaging methods for perfusion imaging and hemodynamic characterization of a wide range of diseases

    Facilitated Phospholipid Translocation across Vesicle Membranes Using Low-Molecular-Weight Synthetic Flippases

    No full text
    Facilitated Phospholipid Translocation across Vesicle Membranes Using Low-Molecular-Weight Synthetic Flippase

    Synthesis and Characterization of NVOC-DOPE, a Caged Photoactivatable Derivative of Dioleoylphosphatidylethanolamine

    No full text
    A caged, photocleavable derivative of dioleoylphosphatidylethanolamine (DOPE) called NVOC-DOPE was prepared by reaction of DOPE with 6-nitroveratryloxycarbonyl chloride. In contrast to egg phosphatidylethanolamine (EPE), NVOC-DOPE or its 1:1 mixture with EPE forms liposomes at both pH 7.4 and 5.0. Photolysis (Îť > 300 nm) of aqueous liposomal dispersions of NVOC-DOPE at pH 9.0, 7.4, or 5.0 results in complete conversion to DOPE and subsequent release of entrapped calcein dye. The temporal and spatial control associated with the photorelease technique suggests that NVOC-DOPE can be used to study a range of important dynamic membrane processes such as membrane fusion and the action of membrane-associated enzymes

    Advances in Optical Sensors of <i>N</i>‑Acetyl-β‑d‑hexosaminidase (<i>N</i>‑Acetyl-β‑d‑glucosaminidase)

    No full text
    N-Acetyl-β-d-hexosaminidases (EC 3.2.1.52) are exo-acting glycosyl hydrolases that remove N-acetyl-β-d-glucosamine (Glc-NAc) or N-acetyl-β-d-galactosamine (Gal-NAc) from the nonreducing ends of various biomolecules including oligosaccharides, glycoproteins, and glycolipids. The same enzymes are sometimes called N-acetyl-β-d-glucosaminidases, and this review article employs the shorthand descriptor HEX­(NAG) to indicate that the terms HEX or NAG are used interchangeably in the literature. The wide distribution of HEX­(NAG) throughout the biosphere and its intracellular location in lysosomes combine to make it an important enzyme in food science, agriculture, cell biology, medical diagnostics, and chemotherapy. For more than 50 years, researchers have employed chromogenic derivatives of N-acetyl-β-d-glucosaminide in basic assays for biomedical research and clinical chemistry. Recent conceptual and synthetic innovations in molecular fluorescence sensors, along with concurrent technical improvements in instrumentation, have produced a growing number of new fluorescent imaging and diagnostics methods. A systematic summary of the recent advances in optical sensors for HEX­(NAG) is provided under the following headings: assessing kidney health, detection and treatment of infectious disease, fluorescence imaging of cancer, treatment of lysosomal disorders, and reactive probes for chemical biology. The article concludes with some comments on likely future directions

    Enhanced Carboxylate Binding Using Urea and Amide-Based Receptors with Internal Lewis Acid Coordination:  A Cooperative Polarization Effect

    No full text
    A structural design strategy is described that greatly improves the acetate binding ability of neutral urea and amide-based receptors. The enhanced binding is due to a cooperative polarization effect which is induced by intramolecular coordination of the urea or amide carbonyl to a Lewis acidic boronate group. A series of boronate-ureas, 3, and a related bis(boronate-amide), 23, were prepared in two steps from 2-(aminophenyl)boronic acid and their structures elucidated using X-ray crystallography and other spectrometric methods. The abilities of the receptors to associate with tetrabutylammonium acetate in dimethyl sulfoxide solution were determined by 1H NMR titration experiments. Association constants were calculated using nonlinear curve-fitting methods. The boronate-ureas 3 strongly bind to acetate in dimethyl sulfoxide solution with association constants as high as 6 × 104 M-1. This is more than 150 times greater than the association constants for control urea receptors that lacked an appropriate boron substituent. Thermodynamic studies indicate that the enhanced association is due to a favorable enthalpic change. Additional NMR studies eliminated the possibility of proton transfer to the acetate during complex formation. Molecular modeling indicates that the boronate-ureas exhibit improved acetate binding because the intramolecular coordination (i) induces a larger host dipole moment which strengthens the guest/host ion−dipole interaction, and (ii) increases the positive surface potential at the urea NH residues which strengthens short range Coulombic interactions with the anionic acetate. The observed association constants correlate better with calculated host dipole moments, suggesting that for the boronate-ureas described here this is the more influential factor controlling association

    Supramolecular Complexation of Azobenzene Dyes by Cucurbit[7]uril

    No full text
    This report describes cucurbit[7]uril (CB7) complexation of azobenzene dyes that have a 4-(N,N′-dimethylamino) or 4-amino substituent. Absorption and NMR data show that CB7 encapsulates the protonated form of the azobenzene and that the complexed dye exists as its azonium tautomer with a trans azo conformation and substantial quinoid resonance character. Because CB7 complexation stabilizes the dye conjugate acid, there is an upward shift in its pKa, and in one specific case, the pKa of the protonated azobenzene is increased from 3.09 to 4.47. Molecular modeling indicates that the CB7/azobenzene complex is stabilized by three major noncovalent factors: (i) ion-dipole interactions between the partially cationic 4-(N,N′-dimethylamino) or 4-amino group on the encapsulated protonated azobenzene and the electronegative carbonyl oxygens on CB7, (ii) inclusion of the upper aryl ring of the azobenzene within the hydrophobic CB7 cavity, and (iii) a hydrogen bond between the proton on the azo nitrogen and CB7 carbonyls. CB7 complexation enhances azobenzene stability and increases azobenzene hydrophilicity; thus, it is a promising way to improve azobenzene performance as a pigment or prodrug. In addition, the striking yellow/pink color change that accompanies CB7 complexation can be exploited to create azobenzene dye displacement assays with naked eye detection
    • …
    corecore