43 research outputs found

    Mrk 1419 - a new distance determination

    Full text link
    Water vapor megamasers from the center of active galaxies provide a powerful tool to trace accretion disks at sub-parsec resolution and, through an entirely geometrical method, measure direct distances to galaxies up to 200 Mpc. The Megamaser Cosmology Project (MCP) is formed by a team of astronomers with the aim of identifying new maser systems, and mapping their emission at high angular resolution to determine their distance. Two types of observations are necessary to measure a distance: single-dish monitoring to measure the acceleration of gas in the disk, and sensitive VLBI imaging to measure the angular size of the disk, measure the rotation curve, and model radial displacement of the maser feature. The ultimate goal of the MCP is to make a precise measurement of H0 by measuring such distances to at least 10 maser galaxies in the Hubble flow. We present here the preliminary results from a new maser system, Mrk 1419. Through a model of the rotation from the systemic masers assuming a narrow ring, and combining these results with the acceleration measurement from the Green Bank Telescope, we determine a distance to Mrk 1419 of 81\pm10 Mpc. Given that the disk shows a significant warp that may not be entirely traced by our current observations, more sensitive observations and more sophisticated disk modeling will be essential to improve our distance estimation to this galaxy.Comment: 5 pages, 3 figures, to appear in the proceedings of IAU Symposium 287 "Cosmic Masers- from OH to Ho", in Stellenbosch, S

    Towards Precision Supermassive Black Hole Masses using Megamaser Disks

    Full text link
    Megamaser disks provide the most precise and accurate extragalactic supermassive black hole masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can resolve the gravitational sphere of influence of the black hole and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive black holes (SMBH) that have direct black hole mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical black hole mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km/s and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (>10^8 Msun) black holes at low Eddington ratio. Given the power of maser disks at probing black hole accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.Comment: 9 pages, 5 figures, Apj, updated to match the accepted versio

    The Megamaser Cosmology Project. VII. Investigating disk physics using spectral monitoring observations

    Full text link
    We use single-dish radio spectra of known 22 GHz H2_2O megamasers, primarily gathered from the large dataset observed by the Megamaser Cosmology Project, to identify Keplerian accretion disks and to investigate several aspects of the disk physics. We test a mechanism for maser excitation proposed by Maoz & McKee (1998), whereby population inversion arises in gas behind spiral shocks traveling through the disk. Though the flux of redshifted features is larger on average than that of blueshifted features, in support of the model, the high-velocity features show none of the predicted systematic velocity drifts. We find rapid intra-day variability in the maser spectrum of ESO 558-G009 that is likely the result of interstellar scintillation, for which we favor a nearby (D70D \approx 70 pc) scattering screen. In a search for reverberation in six well-sampled sources, we find that any radially-propagating signal must be contributing \lesssim10% of the total variability. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200--300 mG (1σ1\sigma), but our most stringent limits reach down to 73 mG for the galaxy NGC 1194.Comment: Accepted for publication in Ap

    Refining the M_BH-V_c scaling relation with HI rotation curves of water megamaser galaxies

    Get PDF
    Black hole - galaxy scaling relations provide information about the coevolution of supermassive black holes and their host galaxies. We compare the black hole mass - circular velocity (MBH - Vc) relation with the black hole mass - bulge stellar velocity dispersion (MBH - sigma) relation, to see whether the scaling relations can passively emerge from a large number of mergers, or require a physical mechanism, such as feedback from an active nucleus. We present VLA H I observations of five galaxies, including three water megamaser galaxies, to measure the circular velocity. Using twenty-two galaxies with dynamical MBH measurements and Vc measurements extending to large radius, our best-fit MBH - Vc relation, log MBH = alpha + beta log(Vc /200 km s^-1), yields alpha = 7.43+/-0.13, beta = 3.68+1.23/-1.20, and intrinsic scatter epsilon_int = 0.51+0.11/-0.09. The intrinsic scatter may well be higher than 0.51, as we take great care to ascribe conservatively large observational errors. We find comparable scatter in the MBH - sigma relations, epsilon_int = 0.48+0.10/-0.08, while pure merging scenarios would likely result in a tighter scaling with the dark halo (as traced by Vc) than baryonic (sigma) properties. Instead, feedback from the active nucleus may act on bulge scales to tighten the MBH - sigma relation with respect to the MBH - Vc relation, as observed.Comment: 27 pages, 15 figures, ApJ accepte

    Circumnuclear Structures in Megamaser Host Galaxies

    Full text link
    Using HST, we identify circumnuclear (100100-500500 pc scale) structures in nine new H2_2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. (2013) and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200<200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the 100\sim100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.Comment: 24 pages, 16 figures, 4 tables; Resubmitted to ApJ after referee's comment

    Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies

    Full text link
    We use new precision measurements of black hole masses from water megamaser disks to investigate scaling relations between macroscopic galaxy properties and supermassive black hole (BH) mass. The megamaser-derived BH masses span 10^6-10^8 M_sun, while all the galaxy properties that we examine (including stellar mass, central mass density, central velocity dispersion) lie within a narrow range. Thus, no galaxy property correlates tightly with M_BH in ~L* spiral galaxies. Of them all, stellar velocity dispersion provides the tightest relation, but at fixed sigma* the mean megamaser M_BH are offset by -0.6+/-0.1 dex relative to early-type galaxies. Spiral galaxies with non-maser dynamical BH masses do not show this offset. At low mass, we do not yet know the full distribution of BH mass at fixed galaxy property; the non-maser dynamical measurements may miss the low-mass end of the BH distribution due to inability to resolve the spheres of influence and/or megamasers may preferentially occur in lower-mass BHs.Comment: 6 pages, 4 figures, replaced to fix error: NGC 4594 is not a maser galax
    corecore