21,175 research outputs found

    Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets

    Full text link
    We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of Thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly---for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds.Comment: 13 pages, 9 figures, http://csc.ucdavis.edu/~cmg/compmech/pubs/mrd.ht

    Dynamic Matrix Factorization with Priors on Unknown Values

    Full text link
    Advanced and effective collaborative filtering methods based on explicit feedback assume that unknown ratings do not follow the same model as the observed ones (\emph{not missing at random}). In this work, we build on this assumption, and introduce a novel dynamic matrix factorization framework that allows to set an explicit prior on unknown values. When new ratings, users, or items enter the system, we can update the factorization in time independent of the size of data (number of users, items and ratings). Hence, we can quickly recommend items even to very recent users. We test our methods on three large datasets, including two very sparse ones, in static and dynamic conditions. In each case, we outrank state-of-the-art matrix factorization methods that do not use a prior on unknown ratings.Comment: in the Proceedings of 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining 201

    Scalable reconstruction of density matrices

    Full text link
    Recent contributions in the field of quantum state tomography have shown that, despite the exponential growth of Hilbert space with the number of subsystems, tomography of one-dimensional quantum systems may still be performed efficiently by tailored reconstruction schemes. Here, we discuss a scalable method to reconstruct mixed states that are well approximated by matrix product operators. The reconstruction scheme only requires local information about the state, giving rise to a reconstruction technique that is scalable in the system size. It is based on a constructive proof that generic matrix product operators are fully determined by their local reductions. We discuss applications of this scheme for simulated data and experimental data obtained in an ion trap experiment.Comment: 9 pages, 5 figures, replaced with published versio

    Spending time with money: from shared values to social connectivity

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.There is a rapidly growing momentum driving the development of mobile payment systems for co-present interactions, using near-field communication on smartphones and contactless payment systems. The design (and marketing) imperative for this is to enable faster, simpler, effortless and secure transactions, yet our evidence shows that this focus on reducing transactional friction may ignore other important features around making payments. We draw from empirical data to consider user interactions around financial exchanges made on mobile phones. Our findings examine how the practices around making payments support people in making connections, to other people, to their communities, to the places they move through, to their environment, and to what they consume. While these social and community bonds shape the kinds of interactions that become possible, they also shape how users feel about, and act on, the values that they hold with their co-users. We draw implications for future payment systems that make use of community connections, build trust, leverage transactional latency, and generate opportunities for rich social interactions

    Analytical model of brittle destruction based on hypothesis of scale similarity

    Full text link
    The size distribution of dust particles in nuclear fusion devices is close to the power function. A function of this kind can be the result of brittle destruction. From the similarity assumption it follows that the size distribution obeys the power law with the exponent between -4 and -1. The model of destruction has much in common with the fractal theory. The power exponent can be expressed in terms of the fractal dimension. Reasonable assumptions on the shape of fragments concretize the power exponent, and vice versa possible destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure

    Unsteady Simulations of Rocket Plume Expansions in Geostationary Earth Orbit

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143086/1/1.A33838.pd

    Resolving velocity space dynamics in continuum gyrokinetics

    Full text link
    Many plasmas of interest to the astrophysical and fusion communities are weakly collisional. In such plasmas, small scales can develop in the distribution of particle velocities, potentially affecting observable quantities such as turbulent fluxes. Consequently, it is necessary to monitor velocity space resolution in gyrokinetic simulations. In this paper, we present a set of computationally efficient diagnostics for measuring velocity space resolution in gyrokinetic simulations and apply them to a range of plasma physics phenomena using the continuum gyrokinetic code GS2. For the cases considered here, it is found that the use of a collisionality at or below experimental values allows for the resolution of plasma dynamics with relatively few velocity space grid points. Additionally, we describe implementation of an adaptive collision frequency which can be used to improve velocity space resolution in the collisionless regime, where results are expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma

    Implementation of a local principal curves algorithm for neutrino interaction reconstruction in a liquid argon volume

    Get PDF
    A local principal curve algorithm has been implemented in three dimensions for automated track and shower reconstruction of neutrino interactions in a liquid argon time projection chamber. We present details of the algorithm and characterise its performance on simulated data sets.Comment: 14 pages, 17 figures; typing correction to Eq 5, the definition of the local covariance matri

    Time-bin entangled photon holes

    Full text link
    The general concept of entangled photon holes is based on a correlated absence of photon pairs in an otherwise constant optical background. Here we consider the specialized case when this background is confined to two well-defined time bins, which allows the formation of time-bin entangled photon holes. We show that when the typical coherent state background is replaced by a true single-photon (Fock state) background, the basic time-bin entangled photon-hole state becomes equivalent to one of the time-bin entangled photon-pair states. We experimentally demonstrate these ideas using a parametric down-conversion photon-pair source, linear optics, and post-selection to violate a Bell inequality with time-bin entangled photon holes.Comment: 6 pages, 5 figure
    • …
    corecore