120 research outputs found
Generality, State Neutrality and Unemployment in the OECD
According to Buchanan and Congleton (1998), the generality principle in politics blocks special interests. Consequently, the generality principle should thereby promote economic efficiency. This study tests this hypothesis on wage formation and labor markets, by investigating whether generality defined as state neutrality could explain employment performance among OECD countries during 1970-2003. We identify three types of non-neutrality as concerns unemployment: the level or degree of government interference in the wage bargaining process over and above legislation which facilitate mutually beneficial wage agreements, the constrained bargaining range (meaning the extent to which the state favors or blocks certain outcomes of the bargaining process), and the cost shifting (which relates to state interference shifting the direct or indirect burden of costs facing the parties on the labor market). Our overall hypothesis is that nonneutrality or non-generality increases unemployment rates. The empirical results from the general conditional model suggest that government intervention and a constrained bargaining range clearly increase unemployment, while a few of the cost shifting variables have unexpected effects. The findings thus give some, but not unqualified, support for the generality principle as a method to promote economic efficiency.generality; state neutrality; efficiency; unemployment; wage bargaining; cost shifting; OECD
Frontiers in Pigment Cell and Melanoma Research
We identify emerging frontiers in clinical and basic research of melanocyte
biology and its associated biomedical disciplines. We describe challenges and
opportunities in clinical and basic research of normal and diseased melanocytes
that impact current approaches to research in melanoma and the dermatological
sciences. We focus on four themes: (1) clinical melanoma research, (2) basic
melanoma research, (3) clinical dermatology, and (4) basic pigment cell
research, with the goal of outlining current highlights, challenges, and
frontiers associated with pigmentation and melanocyte biology. Significantly,
this document encapsulates important advances in melanocyte and melanoma
research including emerging frontiers in melanoma immunotherapy, medical and
surgical oncology, dermatology, vitiligo, albinism, genomics and systems
biology, epidemiology, pigment biophysics and chemistry, and evolution
The stabilisation of purified, reconstituted P-glycoprotein by freeze drying with disaccharides
The drug efflux pump P-glycoprotein (P-gp) (ABCB1) confers multidrug resistance, a major cause of failure in the chemotherapy of tumours, exacerbated by a shortage of potent and selective inhibitors. A high throughput assay using purified P-gp to screen and characterise potential inhibitors would greatly accelerate their development. However, long-term stability of purified reconstituted ABCB1 can only be reliably achieved with storage at -80 °C. For example, at 20 °C, the activity of ABCB1 was abrogated with a half-life of <1 day. The aim of this investigation was to stabilise purified, reconstituted ABCB1 to enable storage at higher temperatures and thereby enable design of a high throughput assay system. The ABCB1 purification procedure was optimised to allow successful freeze drying by substitution of glycerol with the disaccharides trehalose or maltose. Addition of disaccharides resulted in ATPase activity being retained immediately following lyophilisation with no significant difference between the two disaccharides. However, during storage trehalose preserved ATPase activity for several months regardless of the temperature (e.g. 60% retention at 150 days), whereas ATPase activity in maltose purified P-gp was affected by both storage time and temperature. The data provide an effective mechanism for the production of resilient purified, reconstituted ABCB1
Molecular mechanisms and cellular functions of cGAS-STING signalling
The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved
Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field
Variance in brain volume with advancing age: implications for defining the limits of normality
Background:
Statistical models of normal ageing brain tissue volumes may support earlier diagnosis of increasingly common, yet still fatal, neurodegenerative diseases. For example, the statistically defined distribution of normal ageing brain tissue volumes may be used as a reference to assess patient volumes. To date, such models were often derived from mean values which were assumed to represent the distributions and boundaries, i.e. percentile ranks, of brain tissue volume. Since it was previously unknown, the objective of the present study was to determine if this assumption was robust, i.e. whether regression models derived from mean values accurately represented the distributions and boundaries of brain tissue volume at older ages.
Materials and Methods:
We acquired T1-w magnetic resonance (MR) brain images of 227 normal and 219 Alzheimer’s disease (AD) subjects (aged 55-89 years) from publicly available databanks. Using nonlinear regression within both samples, we compared mean and percentile rank estimates of whole brain tissue volume by age.
Results:
In both the normal and AD sample, mean regression estimates of brain tissue volume often did not accurately represent percentile rank estimates (errors=-74% to 75%). In the normal sample, mean estimates generally underestimated differences in brain volume at percentile ranks below the mean. Conversely, in the AD sample, mean estimates generally underestimated differences in brain volume at percentile ranks above the mean. Differences between ages at the 5th percentile rank of normal subjects were ~39% greater than mean differences in the AD subjects.
Conclusions:
While more data are required to make true population inferences, our results indicate that mean regression estimates may not accurately represent the distributions of ageing brain tissue volumes. This suggests that percentile rank estimates will be required to robustly define the limits of brain tissue volume in normal ageing and neurodegenerative disease
- …