277 research outputs found

    Collisional Quenching at Ultralow Energies: Controlling Efficiency with Internal State Selection

    Full text link
    Calculations have been carried out for the vibrational quenching of excited H2_2 molecules which collide with Li+^+ ions at ultralow energies. The dynamics has been treated exactly using the well known quantum coupled-channel expansions over different initial vibrational levels. The overall interaction potential has been obtained from the calculations carried out earlier in our group using highly correlated ab initio methods. The results indicate that specific features of the scattering observables, e.g. the appearance of Ramsauer-Townsend minima in elastic channel cross sections and the marked increase of the cooling rates from specific initial states, can be linked to potential properties at vanishing energies (sign and size of scattering lengths) and to the presence of either virtual states or bound states. The suggestion is made that by selecting the initial state preparation of the molecular partners, the ionic interactions would be amenable to controlling quenching efficiency at ultralow energies

    Primordial star formation: relative impact of H2 three-body rates and initial conditions

    Full text link
    Population III stars are the first stars in the Universe to form at z=20-30 out of a pure hydrogen and helium gas in minihalos of 10^5-10^6 M⊙_\odot . Cooling and fragmentation is thus regulated via molecular hydrogen. At densities above 10^8 cm−3^{-3}, the three-body H2 formation rates are particularly important for making the gas fully molecular. These rates were considered to be uncertain by at least a few orders of magnitude. We explore the impact of new accurate three-body H2 formation rates derived by Forrey (2013) for three different minihalos, and compare to the results obtained with three-body rates employed in previous studies. The calculations are performed with the cosmological hydrodynamics code ENZO (release 2.2) coupled with the chemistry package KROME (including a network for primordial chemistry), which was previously shown to be accurate in high resolution simulations. While the new rates can shift the point where the gas becomes fully molecular, leading to a different thermal evolution, there is no trivial trend in how this occurs. While one might naively expect the results to be inbetween the calculations based on Palla et al. (1983) and Abel et al. (2002), the behavior can be close to the former or the latter depending on the dark matter halo that is explored. We conclude that employing the correct three-body rates is about as equally important as the use of appropriate initial conditions, and that the resulting thermal evolution needs to be calculated for every halo individually.Comment: 10 pages, 9 figures, A&A, 561, A13 (2014

    The Small-Scale Dynamo at Low Magnetic Prandtl Numbers

    Full text link
    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(l) \propto l^{theta}, where v(l) is the eddy velocity at a scale l. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with theta = 1/3 to highly compressible Burgers turbulence with theta = 1/2. In this work we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers the growth rate is proportional to Rm^{(1-theta)/(1+theta)}. We furthermore discuss the critical magnetic Reynolds number Rm_crit, which is required for small-scale dynamo action. The value of Rm_crit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_crit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers, if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short timescales.Comment: accepted at Physical Review

    Ion chemistry in the early universe: revisiting the role of HeH+ with new quantum calculations

    Full text link
    The role of HeH+ has been newly assessed with the aid of newly calculated rates which use entirely ab initio methods, thereby allowing us to compute more accurately the relevant abundances within the global chemical network of the early universe. A comparison with the similar role of the ionic molecule LiH+ is also presented. Quantum calculations have been carried out for the gas-phase reaction of HeH+ with H atoms with our new in-house code, based on the negative imaginary potential method. Integral cross sections and reactive rate coefficients obtained under the general conditions of early universe chemistry are presented and discussed. With the new reaction rate, the abundance of HeH+ in the early universe is more than one order of magnitude larger than in previous studies. Our more accurate findings further buttress the possibility to detect cosmological signatures of HeH+.Comment: Astronomy and Astrophysics, in pres

    Chemical complexity in astrophysical simulations: optimization and reduction techniques

    Full text link
    Chemistry has a key role in the evolution of the interstellar medium (ISM), so it is highly desirable to follow its evolution in numerical simulations. However, it may easily dominate the computational cost when applied to large systems. In this paper we discuss two approaches to reduce these costs: (i) based on computational strategies, and (ii) based on the properties and on the topology of the chemical network. The first methods are more robust, while the second are meant to be giving important information on the structure of large, complex networks. To this aim we first discuss the numerical solvers for integrating the system of ordinary differential equations (ODE) associated with the chemical network. We then propose a buffer method that decreases the computational time spent in solving the ODE system. We further discuss a flux-based method that allows one to determine and then cut on the fly the less active reactions. In addition we also present a topological approach for selecting the most probable species that will be active during the chemical evolution, thus gaining information on the chemical network that otherwise would be difficult to retrieve. This topological technique can also be used as an a priori reduction method for any size network. We implemented these methods into a 1D Lagrangian hydrodynamical code to test their effects: both classes lead to large computational speed-ups, ranging from x2 to x5. We have also tested some hybrid approaches finding that coupling the flux method with a buffer strategy gives the best trade-off between robustness and speed-up of calculations.Comment: accepted for publication in MNRA

    The formation of the primitive star SDSS J102915+172927: effect of the dust mass and the grain-size distribution

    Full text link
    Understanding the formation of the extremely metal poor star SDSS-J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the Universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package \krome coupled with the hydrodynamical code \textsc{enzo} assuming grain size distributions produced by the explosion of core-collapse supernovae of 20 and 35 M⊙_\odot primordial stars which are suitable to reproduce the chemical pattern of the SDSS-J102915+172927 star. We find that the dust mass yield produced from Population III supernovae explosions is the most important factor which drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size-range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single supernova event or efficient dust growth should be invoked to get such a high dust content.Comment: Accepted on Ap

    Formation of carbon-enhanced metal-poor stars in the presence of far ultraviolet radiation

    Full text link
    Recent discoveries of carbon-enhanced metal-poor stars like SMSS J031300.36-670839.3 provide increasing observational insights into the formation conditions of the first second-generation stars in the Universe, reflecting the chemical conditions after the first supernova explosion. Here, we present the first cosmological simulations with a detailed chemical network including primordial species as well as C, C+^+, O, O+^+, Si, Si+^+, and Si2+^{2+} following the formation of carbon-enhanced metal poor stars. The presence of background UV flux delays the collapse from z=21z=21 to z=15z=15 and cool the gas down to the CMB temperature for a metallicity of Z/Z⊙_\odot=10−3^{-3}. This can potentially lead to the formation of lower mass stars. Overall, we find that the metals have a stronger effect on the collapse than the radiation, yielding a comparable thermal structure for large variations in the radiative background. We further find that radiative backgrounds are not able to delay the collapse for Z/Z⊙_\odot=10−2^{-2} or a carbon abundance as in SMSS J031300.36-670839.3.Comment: submitted to ApJ

    Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    Full text link
    While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 105^5 M⊙_\odot and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to ∼\sim60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M⊙_\odot. Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.Comment: Submitted to MNRA
    • …
    corecore