227 research outputs found

    A Covariant Entropy Conjecture

    Get PDF
    We conjecture the following entropy bound to be valid in all space-times admitted by Einstein's equation: Let A be the area of any two-dimensional surface. Let L be a hypersurface generated by surface-orthogonal null geodesics with non-positive expansion. Let S be the entropy on L. Then S does not exceed A/4. We present evidence that the bound can be saturated, but not exceeded, in cosmological solutions and in the interior of black holes. For systems with limited self-gravity it reduces to Bekenstein's bound. Because the conjecture is manifestly time reversal invariant, its origin cannot be thermodynamic, but must be statistical. Thus it places a fundamental limit on the number of degrees of freedom in nature.Comment: 41 pages, 7 figures. v2,v3: references adde

    Holography in General Space-times

    Get PDF
    We provide a background-independent formulation of the holographic principle. It permits the construction of embedded hypersurfaces (screens) on which the entire bulk information can be stored at a density of no more than one bit per Planck area. Screens are constructed explicitly for AdS, Minkowski, and de Sitter spaces with and without black holes, and for cosmological solutions. The properties of screens provide clues about the character of a manifestly holographic theory.Comment: 30 pages, 8 figures. v2: references adde

    Complementarity Is Not Enough

    Full text link
    The near-horizon field B of an old black hole is maximally entangled with the early Hawking radiation R, by unitarity of the S-matrix. But B must be maximally entangled with the black hole interior A, by the equivalence principle. Causal patch complementarity fails to reconcile these conflicting requirements. The system B can be probed by a freely falling observer while there is still time to turn around and remain outside the black hole. Therefore, the entangled state of the BR system is dictated by unitarity even in the infalling patch. If, by monogamy of entanglement, B is not entangled with A, the horizon is replaced by a singularity or "firewall". To illustrate the radical nature of the ideas that are needed, I briefly discuss two approaches for avoiding a firewall: the identification of A with a subsystem of R; and a combination of patch complementarity with the Horowitz-Maldacena final-state proposal.Comment: 14 pages, 1 figure. v2: Completely rewritte

    Holographic probabilities in eternal inflation

    Get PDF
    In the global description of eternal inflation, probabilities for vacua are notoriously ambiguous. The local point of view is preferred by holography and naturally picks out a simple probability measure. It is insensitive to large expansion factors or lifetimes, and so resolves a recently noted paradox. Any cosmological measure must be complemented with the probability for observers to emerge in a given vacuum. In lieu of anthropic criteria, I propose to estimate this by the entropy that can be produced in a local patch. This allows for prior-free predictions.Comment: 5 pages, 3 figures. v4: published version, misprints corrected (mu -> eta

    Predicting the Cosmological Constant from the Causal Entropic Principle

    Get PDF
    We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, the principle asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach - weighting by the number of "observers per baryon" - is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.Comment: 38 pages, 9 figures, minor correction in Figure
    corecore