508 research outputs found

    Unveiling the room temperature magnetoelectricity of troilite FeS

    Full text link
    The amazing possibility of magnetoelectric crystals to cross couple electric and magnetic properties without the need of time-dependent Maxwell's equations has attracted a lot of interest in material science. This enthusiasm has re-emerged during the last decade where magnetoelectric and multiferroic crystals have captivated a tremendous number of studies, mostly driven by the quest of low-power-consumption spintronic devices. While several new candidates have been discovered, the desirable magnetoelectric coupling at room temperature is still sparse and calls for new promising candidates. Here, we show from first-principles studies that the troilite phase of the iron sulfide based compounds, one of the most common mineral of Earth, Moon, Mars or meteors, is magnetoelectric up to temperatures as high as 415 K

    Engineering multiferroism in CaMnO3_3

    Full text link
    From first-principles calculations, we investigate the structural instabilities of CaMnO3_3. We point out that, on top of a strong antiferrodistortive instability responsible for its orthorhombic ground-state, the cubic perovskite structure of CaMnO3_3 also exhibit a weak ferroelectric instability. Although ferroelectricity is suppressed by antiferrodistortive oxygen motions, we show that it can be favored using strain or chemical engineering in order to make CaMnO3_3 multiferroic. We finally highlight that the FE instability of CaMnO3_3 is Mn-dominated. This illustrates that, contrary to the common believe, ferroelectricity and magnetism are not necessarily exclusive but can be driven by the same cation

    XML Compression via DAGs

    Full text link
    Unranked trees can be represented using their minimal dag (directed acyclic graph). For XML this achieves high compression ratios due to their repetitive mark up. Unranked trees are often represented through first child/next sibling (fcns) encoded binary trees. We study the difference in size (= number of edges) of minimal dag versus minimal dag of the fcns encoded binary tree. One main finding is that the size of the dag of the binary tree can never be smaller than the square root of the size of the minimal dag, and that there are examples that match this bound. We introduce a new combined structure, the hybrid dag, which is guaranteed to be smaller than (or equal in size to) both dags. Interestingly, we find through experiments that last child/previous sibling encodings are much better for XML compression via dags, than fcns encodings. We determine the average sizes of unranked and binary dags over a given set of labels (under uniform distribution) in terms of their exact generating functions, and in terms of their asymptotical behavior.Comment: A short version of this paper appeared in the Proceedings of ICDT 201

    Strain-induced ferroelectricity in simple rocksalt binary oxides

    Full text link
    The alkaline earth binary oxides adopt a simple rocksalt structure and form an important family of compounds because of their large presence in the earth's mantle and their potential use in microelectronic devices. In comparison to the class of multifunctional ferroelectric perovskite oxides, however, their practical applications remain limited and the emergence of ferroelectricity and related functional properties in simple binary oxides seems so unlikely that it was never previously considered. Here, we show using first-principles density functional calculations that ferroelectricity can be easily induced in simple alkaline earth binary oxides such as barium oxide (BaO) using appropriate epitaxial strains. Going beyond the fundamental discovery, we show that the functional properties (polarization, dielectric constant and piezoelectric response) of such strained binary oxides are comparable in magnitude to those of typical ferroelectric perovskite oxides, so making them of direct interest for applications. Finally, we show that magnetic binary oxides such as EuO, with the same rocksalt structure, behave similarly to the alkaline earth oxides, suggesting a route to new multiferroics combining ferroelectric and magnetic properties

    Density functional perturbation theory within non-collinear magnetism

    Full text link
    We extend the density functional perturbation theory formalism to the case of non-collinear magnetism. The main problem comes with the exchange-correlation (XC) potential derivatives, which are the only ones that are affected by the non-collinearity of the system. Most of the present XC functionals are constructed at the collinear level, such that the off-diagonal (containing magnetization densities along xx and yy directions) derivatives cannot be calculated simply in the non-collinear framework. To solve this problem, we consider here possibilities to transform the non-collinear XC derivatives to a local collinear basis, where the zz axis is aligned with the local magnetization at each point. The two methods we explore are i) expanding the spin rotation matrix as a Taylor series, ii) evaluating explicitly the XC for the local density approximation through an analytical expression of the expansion terms. We compare the two methods and describe their practical implementation. We show their application for atomic displacement and electric field perturbations at the second order, within the norm-conserving pseudopotential methods

    The importance of the electronic contribution to linear magnetoelectricity

    Full text link
    We demonstrate that the electronic contribution to the linear magnetoelectric response, usually omitted in first-principles studies, can be comparable in magnitude to that mediated by lattice distortions, even for materials in which responses are strong. Using a self-consistent Zeeman response to an applied magnetic field for noncollinear electron spins, we show how electric polarization emerges in linear magnetoelectrics through both electronic- and lattice-mediated components -- in analogy with the high- and low-frequency dielectric response to an electric field. The approach we use is conceptually and computationally simple, and can be applied to study both linear and non-linear responses to magnetic fields.Comment: 5 pages, 3 figure

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon
    corecore