16 research outputs found

    Non-adiabatic effects in the phonon dispersion of Mg 1--x Al x B 2

    Full text link
    Superconducting MgB_2\_2 shows an E_2g\_{2g} zone center phonon, as measured by Raman spectroscopy, that is very broad in energy and temperature dependent. The Raman shift and lifetime show large differences with the values elsewhere in the Brillouin Zone measured by Inelastic X-ray Scattering (IXS), where its dispersion can be accounted for by standard harmonic phonon theory, adding only a moderate electron-phonon coupling. Here we show that the effects rapidly disappear when electron-phonon coupling is switched off by Al substitution on the Mg sites. Moreover, using IXS with very high wave-vector resolution in MgB_2\_2, we can follow the dispersion connecting the Raman and the IXS signal, in agreement with a theory using only electron-phonon coupling but without strong anharmonic terms. The observation is important in order to understand the effects of electron-phonon coupling on zone center phonons modes in MgB_2\_2, but also in all metals characterized by a small Fermi velocity in a particular direction, typical for layered compounds

    Anharmonicity of the antiferrodistortive soft mode in barium zirconate BaZrO3_3

    Get PDF
    Barium zirconate (BaZrO3_3) is one of the very few perovskites that is claimed to retain an average cubic structure down to \SI{0}{\K}, while being energetically very close to an antiferrodistortive phase obtained by condensation of a soft phonon mode at the R point of the Brillouin zone boundary. In this work, we report a combined experimental and theoretical study of the temperature dependence of this soft phonon mode. Inelastic neutron and x-ray scattering measurements on single crystals show that it softens substantially from \SI{9.4}{\meV} at room temperature to \SI{5.6}{\meV} at \SI{2}{\K}. In contrast, the acoustic mode at the same R point is nearly temperature independent. The effect of the anharmonicity on the lattice dynamics is investigated non-perturbatively using direct dynamic simulations as well as a first-principles based self-consistent phonon theory, including quantum fluctuations of the atomic motion. By adding cubic and quartic anharmonic force constants, quantitative agreement with the neutron data for the temperature dependence of the antiferrodistortive mode is obtained. The quantum fluctuations of the atomic motion are found to be important to obtain the proper temperature dependence at low temperatures. The mean squared displacements of the different atoms are determined as function of temperature and are shown to be consistent with available experimental data. Adding anharmonicity to the computed fluctuations of the Ba-O distances also improves the comparison with available EXAFS data at \SI{300}{\K}

    Anomalous T-dependence of phonon lifetimes in metallic VO2

    Full text link
    We investigate phonon lifetimes in VO2 single crystals. We do so in the metallic state above the metal-insulator transition (MIT), where strong structural fluctuations are known to take place. By combining inelastic X-ray scattering and Raman spectroscopy, we track the temperature dependence of several acoustic and optical phonon modes up to 1000 K. Contrary to what is commonly observed, we find that phonon lifetimes decrease with decreasing temperature. Our results show that pre-transitional fluctuations in the metallic state give rise to strong electron-phonon scattering that onsets hundreds of degrees above the transition and increases as the MIT is approached. Notably, this effect is not limited to specific points of reciprocal space that could be associated with the structural transition

    Observation of low energy dispersive modes in un- derdoped (La, Nd) 2−x Sr x CuO 4

    Get PDF
    We find excitations lower in energy than known phonon modes in underdoped La2x_{2-x}Srx_xCuO4+δ_{4+\delta} (x=0.08), with both inelastic X-Ray scattering (IXS) and inelastic neutron scattering (INS). A non dispersive excitation at 9 meV is identified and is also seen by INS in (La,Nd)2x_{2-x}Srx_xCuO4+δ_{4+\delta}, with 40%\% Nd substitution. INS also identifies a still lower energy dispersive mode at low q in the Nd free sample. These modes are clearly distinct from the longitudinal acoustic phonon and correspond in energy to the Zone Centre modes measured by optical spectroscopy and associated with stripe dynamics

    Long-wavelength dispersion of transverse acoustic phonons in untwinned YBa2Cu3O7− single crystals

    No full text
    International audienceIn order to study the possibility of enhancing the electron-phonon couplin

    Inelastic x-ray investigation of the ferroelectric transition in SnTe

    No full text
    We report that the lowest energy transverse-optic phonon in metallic SnTe softens to near zero energy at the structural transition at TC=75K and importantly show that the energy of this mode below TC increases as the temperature decreases. Since the mode is a polar displacement this proves unambiguously that SnTe undergoes a ferroelectric displacement below TC. Concentration gradients and imperfect stoichiometry in large crystals may explain why this was not seen in previous inelastic neutron scattering studies. Despite SnTe being metallic we find that the ferroelectric transition is similar to that in ferroelectric insulators, unmodified by the presence of conduction electrons: we find that (i) the damping of the polar mode is dominated by coupling to acoustic phonons rather than electron-phonon coupling, (ii) the transition is almost an ideal continuous transition, and (iii) comparison with density functional calculations identifies the importance of dipolar-dipolar screening for understanding this behavior.</p

    Inelastic x-ray investigation of the ferroelectric transition in SnTe

    Get PDF
    We report that the lowest energy transverse-optic phonon in metallic SnTe softens to near zero energy at the structural transition at TC=75K and importantly show that the energy of this mode below TC increases as the temperature decreases. Since the mode is a polar displacement this proves unambiguously that SnTe undergoes a ferroelectric displacement below TC. Concentration gradients and imperfect stoichiometry in large crystals may explain why this was not seen in previous inelastic neutron scattering studies. Despite SnTe being metallic we find that the ferroelectric transition is similar to that in ferroelectric insulators, unmodified by the presence of conduction electrons: we find that (i) the damping of the polar mode is dominated by coupling to acoustic phonons rather than electron-phonon coupling, (ii) the transition is almost an ideal continuous transition, and (iii) comparison with density functional calculations identifies the importance of dipolar-dipolar screening for understanding this behavior.</p
    corecore