77 research outputs found

    A family of Schr\"odinger operators whose spectrum is an interval

    Full text link
    By approximation, I show that the spectrum of the Schr\"odinger operator with potential V(n)=f(nρ(mod1))V(n) = f(n\rho \pmod 1) for f continuous and ρ>0\rho > 0, ρN\rho \notin \N is an interval.Comment: Comm. Math. Phys. (to appear

    Generic Continuous Spectrum for Ergodic Schr"odinger Operators

    Full text link
    We consider discrete Schr"odinger operators on the line with potentials generated by a minimal homeomorphism on a compact metric space and a continuous sampling function. We introduce the concepts of topological and metric repetition property. Assuming that the underlying dynamical system satisfies one of these repetition properties, we show using Gordon's Lemma that for a generic continuous sampling function, the associated Schr"odinger operators have no eigenvalues in a topological or metric sense, respectively. We present a number of applications, particularly to shifts and skew-shifts on the torus.Comment: 14 page

    Borel-Cantelli sequences

    Get PDF
    A sequence {xn}1\{x_{n}\}_1^\infty in [0,1)[0,1) is called Borel-Cantelli (BC) if for all non-increasing sequences of positive real numbers {an}\{a_n\} with i=1ai=\underset{i=1}{\overset{\infty}{\sum}}a_i=\infty the set k=1n=kB(xn,an))={x[0,1)xnx<anformanyn1}\underset{k=1}{\overset{\infty}{\cap}} \underset{n=k}{\overset{\infty}{\cup}} B(x_n, a_n))=\{x\in[0,1)\mid |x_n-x|<a_n \text{for} \infty \text{many}n\geq1\} has full Lebesgue measure. (To put it informally, BC sequences are sequences for which a natural converse to the Borel-Cantelli Theorem holds). The notion of BC sequences is motivated by the Monotone Shrinking Target Property for dynamical systems, but our approach is from a geometric rather than dynamical perspective. A sufficient condition, a necessary condition and a necessary and sufficient condition for a sequence to be BC are established. A number of examples of BC and not BC sequences are presented. The property of a sequence to be BC is a delicate diophantine property. For example, the orbits of a pseudo-Anosoff IET (interval exchange transformation) are BC while the orbits of a "generic" IET are not. The notion of BC sequences is extended to more general spaces.Comment: 20 pages. Some proofs clarifie

    An algorithm to identify automorphisms which arise from self-induced interval exchange transformations

    Full text link
    We give an algorithm to determine if the dynamical system generated by a positive automorphism of the free group can also be generated by a self-induced interval exchange transformation. The algorithm effectively yields the interval exchange transformation in case of success.Comment: 26 pages, 8 figures. v2: the article has been reorganized to make for a more linear read. A few paragraphs have been added for clarit

    Geometric representation of interval exchange maps over algebraic number fields

    Full text link
    We consider the restriction of interval exchange transformations to algebraic number fields, which leads to maps on lattices. We characterize renormalizability arithmetically, and study its relationships with a geometrical quantity that we call the drift vector. We exhibit some examples of renormalizable interval exchange maps with zero and non-zero drift vector, and carry out some investigations of their properties. In particular, we look for evidence of the finite decomposition property: each lattice is the union of finitely many orbits.Comment: 34 pages, 8 postscript figure

    Irreversible Quantum Baker Map

    Get PDF
    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this super-operator and their link with the increase of the entropy of initially pure states.Comment: 4 pages, 3 figures include

    Escape orbits and Ergodicity in Infinite Step Billiards

    Full text link
    In a previous paper we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given decreasing sequence of non-negative numbers {pn\{p_{n}, there corresponds a table \Bi := \bigcup_{n\in\N} [n,n+1] \times [0,p_{n}]. In this article, first we generalize the main result of the previous paper to a wider class of examples. That is, a.s. there is a unique escape orbit which belongs to the alpha and omega-limit of every other trajectory. Then, following a recent work of Troubetzkoy, we prove that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of ergodic measures is zero.Comment: 27 pages, 8 figure

    Invariant sets for discontinuous parabolic area-preserving torus maps

    Get PDF
    We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive Lebesgue measure and we give bounds on the measure. For several examples we find expressions for the measure of the invariant set but we leave open the question as to whether there are parameters for which this measure is zero.Comment: 19 pages in Latex (with epsfig,amssymb,graphics) with 5 figures in eps; revised version: section 2 rewritten, new example and picture adde

    Recurrence and algorithmic information

    Full text link
    In this paper we initiate a somewhat detailed investigation of the relationships between quantitative recurrence indicators and algorithmic complexity of orbits in weakly chaotic dynamical systems. We mainly focus on examples.Comment: 26 pages, no figure
    corecore