574 research outputs found

    A note on the neutrino mass implications of the K2K experiment

    Full text link
    The K2K experiment has presented the first results on the observation of nu_mu. They show a depletion compared to the expectations and are consistent with neutrino oscillations with a mass-splitting in the range favoured by the Super-Kamiokande atmospheric neutrino measurements. Here we examine the extent by which the range of Delta m^2 obtained from the K2K measurements can vary due to the uncertainties in the flux, cross-section, and detector efficiency.Comment: 8 pages LaTeX, 2 postscript figures, J. Phys. G. (to appear

    Measurement of the differential cross section and charge asymmetry for inclusive pp → W\u3csup\u3e±\u3c/sup\u3e + \u3ci\u3eX\u3c/i\u3e production at √\u3ci\u3es\u3c/i\u3e = 8 TeV

    Get PDF
    The differential cross section and charge asymmetry for inclusive pp → W± + X → Ό±Μ + X production at √s = 8 TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8 fb−1 recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10−3 to 10−1

    Calorimetry Task Force Report

    Get PDF
    In this note we summarize the studies and recommendations of the calorimeter simulation task force (CaloTF). The CaloTF was established in February 2008 in order to understand and reconcile the discrepancies observed between the CMS calorimetry simulation and the test beam data recorded during 2004 and 2006. As the result of studies by the CaloTF a new version of Geant4 was developed and introduced in the CMS detector simulation leading to significanly better agreement with test beam data. Fast and flexible parameterizations describing showering in the calorimeter are introduced both in the Full Simulation (with a Gflash-like approach) and in the Fast Simulation. The CaloTF has developed a strategy to rapidly tune the CMS calorimeter simulation using the first LHC collision data when it becomes available. The improvements delivered by the CaloTF have been implemented in the software release CMSSW 2.1.0

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation