3,508 research outputs found
Scalar and higher even spin glueball masses from an anomalous modified holographic model
In this work, within an anomalous modified holographic softwall model, we
calculate analytically the masses of the scalar glueball with its radial
excitations and higher even glueball spin states, with , from a single
mass equation. Using this approach we achieved an unified treatment for both
scalar and high even spin glueballs masses. Furthermore, we also obtain the
Regge trajectory associated with the pomeron compatible with other approaches.Comment: V4: 14 pages, 3 tables, 1 figure. Text improved. New references
included. Typos corrected. Results slightly modified due to the improvement
of the statistical analysis. This version matches the published one in EP
Effective mapping of spin-1 chains onto integrable fermionic models. A study of string and Neel correlation functions
We derive the dominant contribution to the large-distance decay of
correlation functions for a spin chain model that exhibits both Haldane and
Neel phases in its ground state phase diagram. The analytic results are
obtained by means of an approximate mapping between a spin-1 anisotropic
Hamiltonian onto a fermionic model of noninteracting Bogolioubov quasiparticles
related in turn to the XY spin-1/2 chain in a transverse field. This approach
allows us to express the spin-1 string operators in terms of fermionic
operators so that the dominant contribution to the string correlators at large
distances can be computed using the technique of Toeplitz determinants. As
expected, we find long-range string order both in the longitudinal and in the
transverse channel in the Haldane phase, while in the Neel phase only the
longitudinal order survives. In this way, the long-range string order can be
explicitly related to the components of the magnetization of the XY model.
Moreover, apart from the critical line, where the decay is algebraic, we find
that in the gapped phases the decay is governed by an exponential tail
multiplied by algebraic factors. As regards the usual two points correlation
functions, we show that the longitudinal one behaves in a 'dual' fashion with
respect to the transverse string correlator, namely both the asymptotic values
and the decay laws exchange when the transition line is crossed. For the
transverse spin-spin correlator, we find a finite characteristic length which
is an unexpected feature at the critical point. We also comment briefly the
entanglement features of the original system versus those of the effective
model. The goodness of the approximation and the analytical predictions are
checked versus density-matrix renormalization group calculations.Comment: 28 pages, plain LaTeX, 2 EPS figure
On critical phases in anisotropic spin-1 chains
Quantum spin-1 chains may develop massless phases in presence of Ising-like
and single-ion anisotropies. We have studied c=1 critical phases by means of
both analytical techniques, including a mapping of the lattice Hamiltonian onto
an O(2) nonlinear sigma model, and a multi-target DMRG algorithm which allows
for accurate calculation of excited states. We find excellent quantitative
agreement with the theoretical predictions and conclude that a pure Gaussian
model, without any orbifold construction, describes correctly the low-energy
physics of these critical phases. This combined analysis indicates that the
multicritical point at large single-ion anisotropy does not belong to the same
universality class as the Takhtajan-Babujian Hamiltonian as claimed in the
past. A link between string-order correlation functions and twisting vertex
operators, along the c=1 line that ends at this point, is also suggested.Comment: 9 pages, 3 figures, svjour format, submitted to Eur. Phys. J.
Qubit Teleportation and Transfer across Antiferromagnetic Spin Chains
We explore the capability of spin-1/2 chains to act as quantum channels for
both teleportation and transfer of qubits. Exploiting the emergence of
long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96,
247206 (2006)], here we show how to obtain high communication fidelities
between distant parties. An investigation of protocols of teleportation and
state transfer is presented, in the realistic situation where temperature is
included. Basing our setup on antiferromagnetic rotationally invariant systems,
both protocols are represented by pure depolarizing channels. We propose a
scheme where channel fidelity close to one can be achieved on very long chains
at moderately small temperature.Comment: 5 pages, 4 .eps figure
Holographic Description of Chiral Symmetry Breaking in a Magnetic Field in 2+1 Dimensions with an Improved Dilaton
We consider a holographic description of the chiral symmetry breaking in an
external magnetic field in -dimensional gauge theories from the
softwall model using an improved dilaton field profile given by . We find inverse magnetic catalysis for
, where is the pseudocritical
magnetic field. The transition between these two regimes is a crossover and
occurs at , which depends on the fermion mass and temperature. We also
find spontaneous chiral symmetry breaking (the chiral condensate ) at in the chiral limit () and chiral symmetry
restoration for finite temperatures. We observe that changing the parameter
of the dilaton profile only affects the overall scales of the system such as
and . For instance, by increasing one sees an increase of
and . This suggests that increasing the parameters and
will decrease the values of and .Comment: V2: 13 pages, 10 figures. New figure added. Text improved. Typos
corrected. New references added. Results unchanged. This version matches the
published one in EP
Phase separation and pairing regimes in the one-dimensional asymmetric Hubbard model
We address some open questions regarding the phase diagram of the
one-dimensional Hubbard model with asymmetric hopping coefficients and balanced
species. In the attractive regime we present a numerical study of the passage
from on-site pairing dominant correlations at small asymmetries to
charge-density waves in the region with markedly different hopping
coefficients. In the repulsive regime we exploit two analytical treatments in
the strong- and weak-coupling regimes in order to locate the onset of phase
separation at small and large asymmetries respectively.Comment: 13 pages, RevTeX 4, 12 eps figures, some additional refs. with
respect to v1 and citation errors fixe
Stable particles in anisotropic spin-1 chains
Motivated by field-theoretic predictions we investigate the stable
excitations that exist in two characteristic gapped phases of a spin-1 model
with Ising-like and single-ion anisotropies. The sine-Gordon theory indicates a
region close to the phase boundary where a stable breather exists besides the
stable particles, that form the Haldane triplet at the Heisenberg isotropic
point. The numerical data, obtained by means of the Density Matrix
Renormalization Group, confirm this picture in the so-called large-D phase for
which we give also a quantitative analysis of the bound states using standard
perturbation theory. However, the situation turns out to be considerably more
intricate in the Haldane phase where, to the best of our data, we do not
observe stable breathers contrarily to what could be expected from the
sine-Gordon model, but rather only the three modes predicted by a novel
anisotropic extension of the Non-Linear Sigma Model studied here by means of a
saddle-point approximation.Comment: 8 pages, 7 eps figures, svjour clas
- …