11,570 research outputs found

    Clock spectroscopy of interacting bosons in deep optical lattices

    Full text link
    We report on high-resolution optical spectroscopy of interacting bosonic 174^{174}Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow "clock" transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths

    Non-linear Relaxation of Interacting Bosons Coherently Driven on a Narrow Optical Transition

    Full text link
    We study the dynamics of a two-component Bose-Einstein condensate (BEC) of 174^{174}Yb atoms coherently driven on a narrow optical transition. The excitation transfers the BEC to a superposition of states with different internal and momentum quantum numbers. We observe a crossover with decreasing driving strength between a regime of damped oscillations, where coherent driving prevails, and an incoherent regime, where relaxation takes over. Several relaxation mechanisms are involved: inelastic losses involving two excited atoms, leading to a non-exponential decay of populations; Doppler broadening due to the finite momentum width of the BEC and inhomogeneous elastic interactions, both leading to dephasing and to damping of the oscillations. We compare our observations to a two-component Gross-Pitaevskii (GP) model that fully includes these effects. For small or moderate densities, the damping of the oscillations is mostly due to Doppler broadening. In this regime, we find excellent agreement between the model and the experimental results. For higher densities, the role of interactions increases and so does the damping rate of the oscillations. The damping in the GP model is less pronounced than in the experiment, possibly a hint for many-body effects not captured by the mean-field description.Comment: 7 pages, 4 figures; supplementary material available as ancillary fil

    High velocity blue-shifted FeII absorption in the dwarf star-forming galaxy PHL293B: Evidence for a wind driven supershell?

    Get PDF
    X-shooter and ISIS WHT spectra of the starforming galaxy PHL 293B also known as A2228-00 and SDSS J223036.79-000636.9 are presented in this paper. We find broad (FWHM = 1000km/s) and very broad (FWZI = 4000km/s) components in the Balmer lines, narrow absorption components in the Balmer series blueshifted by 800km/s, previously undetected FeII multiplet (42) absorptions also blueshifted by 800km/s, IR CaII triplet stellar absorptions consistent with [Fe/H] < -2.0 and no broad components or blushifted absorptions in the HeI lines. Based on historical records, we found no optical variability at the 5 sigma level of 0.02 mag between 2005 and 2013 and no optical variability at the level of 0.1mag for the past 24 years. The lack of variability rules out transient phenomena like luminous blue variables or SN IIn as the origin of the blue shifted absorptions of HI and FeII. The evidence points to either a young and dense expanding supershell or a stationary cooling wind, in both cases driven by the young cluster wind.Comment: Accepted for publication in MNRAS; 15 pages, 10 figure

    The LDEF ultra heavy cosmic ray experiment

    Get PDF
    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed

    Effect of x‐y coupling on the beam breakup instability

    Full text link
    In solenoidal beam transport systems, motions in the x and y directions are coupled by the v×B force. A two‐dimensional coupled mode description of the beam breakup (BBU) instability is presented; its dispersion relation is derived and compared with the one‐dimensional BBU dispersion relation. In the two‐dimensional description, instability growth is doubled and two additional wave modes are found in the regime of strong focusing. In the weak focusing regime, the two‐dimensional description gives the same dispersion relation as the one‐dimensional model.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69723/2/APPLAB-58-7-699-1.pd

    Schwarzschild models of the Sculptor dSph galaxy

    Get PDF
    We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital structure of the system modelled (e.g. velocity anisotropy). Therefore not only can we derive the dark matter content of these systems, but also explore possible formation scenarios. Here we present preliminary results for the Sculptor dSph. We find that the mass of Sculptor within 1kpc is 8.5\times10^(7\pm0.05) M\odot, its anisotropy profile is tangentially biased and slightly more isotropic near the center. For an NFW profile, the preferred concentration (~15) is compatible with cosmological models. Very cuspy density profiles (steeper than NFW) are strongly disfavoured for Sculptor.Comment: 2 pages, 4 figures, to appear in the proceedings of "Assembling the Puzzle of the Milky Way", Le Grand Bornand (Apr. 17-22, 2011

    Microwave growth from the beam breakup instability in long‐pulse electron beam experiments

    Full text link
    The beam breakup (BBU) instability has been investigated in high‐current, long‐pulse electron beams propagating through microwave cavities. Experiments are performed using a relativistic electron‐beam generator with diode parameters: 0.7–0.8 MV, 1–15 kA, and 0.5–1.5 ÎŒs. The magnitude of the solenoidal magnetic field places these experiments in an intermediate regime between strong focusing and weak focusing. The electron‐beam transport system consists of ten identical pillbox cavities each containing a small microwave loop antenna designed to detect the TM110 beam breakup mode. The TM110 microwave mode is primed in the first cavity by a magnetron tuned to the resonance frequency of 2.5 GHz. The BBU instability growth is measured through the amplification of the 2.5 GHz microwaves between the second and tenth cavities. Strong growth (25–38 dB) of the TM110 microwave signal is observed when the initial cavity is primed exactly on resonance, with a rapid decrease of the growth rate off‐resonance. The magnitude of microwave growth is consistent with the predictions of BBU theory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69350/2/APPLAB-61-6-642-1.pd
    • 

    corecore