71 research outputs found

    A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator

    Full text link
    We propose a novel source based on a dual-drive modulator that is adaptable and allows Alice to choose between various practical quantum key distribution (QKD) protocols depending on what receiver she is communicating with. Experimental results show that the proposed transmitter is suitable for implementation of the Bennett and Brassard 1984 (BB84), coherent one-way (COW) and differential phase shift (DPS) protocols with stable and low quantum bit error rate. This could become a useful component in network QKD, where multi-protocol capability is highly desirable.Comment: 15 pages, 7 figure

    Absolute calibration of fiber-coupled single-photon detector

    Full text link
    We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better of 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Swiss Federal Office of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.Comment: 14 pages, 4 figure

    Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency

    Full text link
    We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 {\mu}s of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110o{^o}C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.Comment: 4 pages, 4 figure

    Afterpulsing studies of low noise InGaAs/InP single-photon negative feedback avalanche diodes

    Full text link
    We characterize the temporal evolution of the afterpulse probability in a free-running negative feedback avalanche diode (NFAD) over an extended range, from \sim300 ns to \sim1 ms. This is possible thanks to an extremely low dark count rate on the order of 1 cps at 10% efficiency, achieved by operating the NFAD at a temperatures as low as 143 K. Experimental results in a large range of operating temperatures (223-143 K) are compared with a legacy afterpulsing model based on multiple trap families at discrete energy levels, which is found to be lacking in physical completeness. Subsequently, we expand on a recent proposal which considers a continuous spectrum of traps by introducing well defined edges to the spectrum, which are experimentally observed.Comment: 9 pages, 5 figure

    Detector-Device-Independent Quantum Key Distribution

    Full text link
    Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all detector side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the rates are dependent on detecting two photons - one from each source. Here we experimentally demonstrate a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon (TQSP) to significantly simplify the implementation and improve the efficiency of mdiQKD in several aspects.Comment: 5 pages + 3 figure

    Detector-device-independent QKD: security analysis and fast implementation

    Full text link
    One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side- channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point- to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.Comment: 9 pages, 4 figure

    High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors

    Get PDF
    Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) made of amorphous material has delivered excellent performances, and has had a great impact on a range of research fields. Despite showing the highest system detection efficiency (SDE) ever reported with SNSPDs, amorphous materials typically lead to lower critical currents, which impacts on their jitter performance. Combining a very low jitter and a high SDE remains a challenge. Here, we report on highly efficient superconducting nanowire single-photon detectors based on amorphous MoSi, combining system jitters as low as 26 ps and a SDE of 80% at 1550 nm. We also report detailed observations on the jitter behaviour, which hints at intrinsic limitations and leads to practical implications for SNSPD performance

    Demonstration of a Thermally Coupled Row-Column SNSPD Imaging Array

    Get PDF
    While single-pixel superconducting nanowire single photon detectors (SNSPDs) have demonstrated remarkable efficiency and timing performance from the UV to near-IR, scaling these devices to large imaging arrays remains challenging. Here, we propose a new SNSPD multiplexing system using thermal coupling and detection correlations between two photosensitive layers of an array. Using this architecture with the channels of one layer oriented in rows and the second layer in columns, we demonstrate imaging capability in 16-pixel arrays with accurate spot tracking at the few-photon level. We also explore the performance trade-offs of orienting the top layer nanowires parallel and perpendicular to the bottom layer. The thermally coupled row-column scheme is readily able to scale to the kilopixel size with existing readout systems and, when combined with other multiplexing architectures, has the potential to enable megapixel scale SNSPD imaging arrays

    Provably Secure and Practical Quantum Key Distribution over 307 km of Optical Fibre

    Full text link
    Proposed in 1984, quantum key distribution (QKD) allows two users to exchange provably secure keys via a potentially insecure quantum channel. Since then, QKD has attracted much attention and significant progress has been made in both theory and practice. On the application front, however, the operating distance of practical fibre-based QKD systems is limited to about 150 km, which is mainly due to the high background noise produced by commonly used semiconductor single-photon detectors (SPDs) and the stringent demand on the minimum classical- post-processing (CPP) block size. Here, we present a compact and autonomous QKD system that is capable of distributing provably-secure cryptographic key over 307 km of ultra-low-loss optical fibre (51.9 dB loss). The system is based on a recently developed standard semiconductor (inGaAs) SPDs with record low background noise and a novel efficient finite-key security analysis for QKD. This demonstrates the feasibility of practical long-distance QKD based on standard fibre optic telecom components.Comment: 6+7 pages, 3 figure
    corecore