5,185 research outputs found

    Neural patterns of the implicit association test

    Get PDF
    The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250–450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies

    BodyScan: Enabling Radio-based Sensing on Wearable Devices for Contactless Activity and Vital Sign Monitoring

    Get PDF
    Wearable devices are increasingly becoming mainstream consumer products carried by millions of consumers. However, the potential impact of these devices is currently constrained by fundamental limitations of their built-in sensors. In this paper, we introduce radio as a new powerful sensing modality for wearable devices and propose to transform radio into a mobile sensor of human activities and vital signs. We present BodyScan, a wearable system that enables radio to act as a single modality capable of providing whole-body continuous sensing of the user. BodyScan overcomes key limitations of existing wearable devices by providing a contactless and privacy-preserving approach to capturing a rich variety of human activities and vital sign information. Our prototype design of BodyScan is comprised of two components: one worn on the hip and the other worn on the wrist, and is inspired by the increasingly prevalent scenario where a user carries a smartphone while also wearing a wristband/smartwatch. This prototype can support daily usage with one single charge per day. Experimental results show that in controlled settings, BodyScan can recognize a diverse set of human activities while also estimating the user's breathing rate with high accuracy. Even in very challenging real-world settings, BodyScan can still infer activities with an average accuracy above 60% and monitor breathing rate information a reasonable amount of time during each day

    Modifying executive function and self-regulatory behaviours in developmental dyslexia: cognitive and neural bases of response inhibition

    Get PDF
    Dyslexia is characterised by impaired reading, but socio-emotional problems typically co-occur (1). It is also associated with response inhibition (RI) impairments at the behavioural (2,3) and neural levels as indexed by reduced response-inhibition related P3 amplitude (4). Studies have shown that variability in RI is predictive of the severity of reading and socio-emotional problems in dyslexia (2,5), suggesting that RI may underpin these issues. RI appears modifiable at the behavioural and neural levels with training (6,7). Therefore, RI training may improve RI (behavioural & neural), and reduce reading and socio-emotional problems in dyslexia. No study to date has explored whether RI is modifiable in dyslexia and whether training transfers to reduced symptoms

    Archaea catalyze iron-dependent anaerobic oxidation of methane

    Get PDF
    Anaerobic oxidation of methane (AOM) is crucial for controlling the emission of this potent greenhouse gas to the atmosphere. Nitrite-, nitrate-, and sulfate-dependent methane oxidation is well-documented, but AOM coupled to the reduction of oxidized metals has so far been demonstrated only in environmental samples. Here, using a freshwater enrichment culture, we show that archaea of the order Methanosarcinales, related to “Candidatus Methanoperedens nitroreducens,” couple the reduction of environmentally relevant forms of Fe^(3+) and Mn^(4+) to the oxidation of methane. We obtained an enrichment culture of these archaea under anaerobic, nitrate-reducing conditions with a continuous supply of methane. Via batch incubations using [^(13)C]methane, we demonstrated that soluble ferric iron (Fe^(3+), as Fe-citrate) and nanoparticulate forms of Fe^(3+) and Mn^(4+) supported methane-oxidizing activity. CO_2 and ferrous iron (Fe^(2+)) were produced in stoichiometric amounts. Our study connects the previous finding of iron-dependent AOM to microorganisms detected in numerous habitats worldwide. Consequently, it enables a better understanding of the interaction between the biogeochemical cycles of iron and methane

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore