159 research outputs found

    Bialgebraic Semantics for Logic Programming

    Get PDF
    Bialgebrae provide an abstract framework encompassing the semantics of different kinds of computational models. In this paper we propose a bialgebraic approach to the semantics of logic programming. Our methodology is to study logic programs as reactive systems and exploit abstract techniques developed in that setting. First we use saturation to model the operational semantics of logic programs as coalgebrae on presheaves. Then, we make explicit the underlying algebraic structure by using bialgebrae on presheaves. The resulting semantics turns out to be compositional with respect to conjunction and term substitution. Also, it encodes a parallel model of computation, whose soundness is guaranteed by a built-in notion of synchronisation between different threads

    Interacting Hopf Algebras

    Full text link
    We introduce the theory IH of interacting Hopf algebras, parametrised over a principal ideal domain R. The axioms of IH are derived using Lack's approach to composing PROPs: they feature two Hopf algebra and two Frobenius algebra structures on four different monoid-comonoid pairs. This construction is instrumental in showing that IH is isomorphic to the PROP of linear relations (i.e. subspaces) over the field of fractions of R

    The Power of Convex Algebras

    Get PDF
    Probabilistic automata (PA) combine probability and nondeterminism. They can be given different semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution bisimilarity. The latter is based on the view of PA as transformers of probability distributions, also called belief states, and promotes distributions to first-class citizens. We give a coalgebraic account of the latter semantics, and explain the genesis of the belief-state transformer from a PA. To do so, we make explicit the convex algebraic structure present in PA and identify belief-state transformers as transition systems with state space that carries a convex algebra. As a consequence of our abstract approach, we can give a sound proof technique which we call bisimulation up-to convex hull.Comment: Full (extended) version of a CONCUR 2017 paper, to be submitted to LMC

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra őĪ‚ÄČ‚Ā£:X‚ÜíHX\alpha\colon X \to HX for a functor H‚ÄČ‚Ā£:Set‚ÜíSetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H‚Äĺ\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H‚Äĺ\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction

    Towards Trace Metrics via Functor Lifting

    Get PDF
    We investigate the possibility of deriving metric trace semantics in a coalgebraic framework. First, we generalize a technique for systematically lifting functors from the category Set of sets to the category PMet of pseudometric spaces, showing under which conditions also natural transformations, monads and distributive laws can be lifted. By exploiting some recent work on an abstract determinization, these results enable the derivation of trace metrics starting from coalgebras in Set. More precisely, for a coalgebra on Set we determinize it, thus obtaining a coalgebra in the Eilenberg-Moore category of a monad. When the monad can be lifted to PMet, we can equip the final coalgebra with a behavioral distance. The trace distance between two states of the original coalgebra is the distance between their images in the determinized coalgebra through the unit of the monad. We show how our framework applies to nondeterministic automata and probabilistic automata

    Combining Semilattices and Semimodules

    Get PDF
    We describe the canonical weak distributive law őī‚ÄČ‚Ā£:SP‚ÜíPS\delta \colon \mathcal S \mathcal P \to \mathcal P \mathcal S of the powerset monad P\mathcal P over the SS-left-semimodule monad S\mathcal S, for a class of semirings SS. We show that the composition of P\mathcal P with S\mathcal S by means of such őī\delta yields almost the monad of convex subsets previously introduced by Jacobs: the only difference consists in the absence in Jacobs's monad of the empty convex set. We provide a handy characterisation of the canonical weak lifting of P\mathcal P to EM(S)\mathbb{EM}(\mathcal S) as well as an algebraic theory for the resulting composed monad. Finally, we restrict the composed monad to finitely generated convex subsets and we show that it is presented by an algebraic theory combining semimodules and semilattices with bottom, which are the algebras for the finite powerset monad Pf\mathcal P_f

    Up-To Techniques for Behavioural Metrics via Fibrations

    Get PDF
    Up-to techniques are a well-known method for enhancing coinductive proofs of behavioural equivalences. We introduce up-to techniques for behavioural metrics between systems modelled as coalgebras and we provide abstract results to prove their soundness in a compositional way. In order to obtain a general framework, we need a systematic way to lift functors: we show that the Wasserstein lifting of a functor, introduced in a previous work, corresponds to a change of base in a fibrational sense. This observation enables us to reuse existing results about soundness of up-to techniques in a fibrational setting. We focus on the fibrations of predicates and relations valued in a quantale, for which pseudo-metric spaces are an example. To illustrate our approach we provide an example on distances between regular languages

    Bisimilarity of Open Terms in Stream GSOS

    Get PDF
    Stream GSOS is a specification format for operations and calculi on infinite sequences. The notion of bisimilarity provides a canonical proof technique for equivalence of closed terms in such specifications. In this paper, we focus on open terms, which may contain variables, and which are equivalent whenever they denote the same stream for every possible instantiation of the variables. Our main contribution is to capture equivalence of open terms as bisimilarity on certain Mealy machines, providing a concrete proof technique. Moreover, we introduce an enhancement of this technique, called bisimulation up-to substitutions, and show how to combine it with other up-to techniques to obtain a powerful method for proving equivalence of open terms

    The Axiom of Choice in Cartesian Bicategories

    Get PDF
    We argue that cartesian bicategories, often used as a general categorical algebra of relations, are also a natural setting for the study of the axiom of choice (AC). In this setting, AC manifests itself as an inequation asserting that every total relation contains a map. The generality of cartesian bicategories allows us to separate this formulation from other set-theoretically equivalent properties, for instance that epimorphisms split. Moreover, via a classification result, we show that cartesian bicategories satisfying choice tend to be those that arise from bicategories of spans
    • ‚Ķ