677 research outputs found

    First exploration of the runaway greenhouse transition with a GCM

    Full text link
    Even if their detection is for now challenging, observation of small terrestrial planets will be easier in a near future thanks to continuous improvements of detection and characterisation instruments. In this quest, climate modeling is a key step to understand their characteristics, atmospheric composition and possible history. If a surface water reservoir is present on such a terrestrial planet, an increase in insolation may lead to a dramatic positive feedback induced by water evaporation: the runaway greenhouse. The resulting rise of global surface temperature leads to the evaporation of the entire water reservoir, separating two very different population of planets: 1) temperate planets with a surface water ocean and 2) hot planets with a puffed atmosphere dominated by water vapor. In this work we use a 3D General Circulation Model (GCM), the Generic-PCM, to study the runaway greenhouse transition, linking temperate and post-runaway states. Our simulations are made of two steps. First, assuming initially a liquid surface ocean, an evaporation phase which enriches the atmosphere in water vapor. Second, when the ocean is considered entirely evaporated, a dry transition phase for which the surface temperature increases dramatically. Finally, it converges on a hot and stable post-runaway state. By describing in detail the evolution of the climate during these two steps, we show a rapid transition of the cloud coverage and of the wind circulation from the troposphere to the stratosphere. By comparing our result to previous studies using 1D models, we discuss the effect of intrinsically 3D processes such as the global dynamics and the clouds, keys to understand the runaway greenhouse. We also explore the potential reversibility of the runaway greenhouse, limited by its radiative unbalance.Comment: 15 pages, 17 figures, accepted for publication in A&

    The effect of rotation and tidal heating on the thermal lightcurves of Super Mercuries

    Full text link
    Short period (<50 days) low-mass (<10Mearth) exoplanets are abundant and the few of them whose radius and mass have been measured already reveal a diversity in composition. Some of these exoplanets are found on eccentric orbits and are subjected to strong tides affecting their rotation and resulting in significant tidal heating. Within this population, some planets are likely to be depleted in volatiles and have no atmosphere. We model the thermal emission of these "Super Mercuries" to study the signatures of rotation and tidal dissipation on their infrared light curve. We compute the time-dependent temperature map at the surface and in the subsurface of the planet and the resulting disk-integrated emission spectrum received by a distant observer for any observation geometry. We calculate the illumination of the planetary surface for any Keplerian orbit and rotation. We include the internal tidal heat flow, vertical heat diffusion in the subsurface and generate synthetic light curves. We show that the different rotation periods predicted by tidal models (spin-orbit resonances, pseudo-synchronization) produce different photometric signatures, which are observable provided that the thermal inertia of the surface is high, like that of solid or melted rocks (but not regolith). Tidal dissipation can also directly affect the light curves and make the inference of the rotation more difficult or easier depending on the existence of hot spots on the surface. Infrared light curve measurement with the James Webb Space Telescope and EChO can be used to infer exoplanets' rotation periods and dissipation rates and thus to test tidal models. This data will also constrain the nature of the (sub)surface by constraining the thermal inertia.Comment: 15 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α\alpha line

    Full text link
    The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α\alpha, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α\alpha line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α\alpha emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α\alpha variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets.Comment: Published in A&A as a Letter to the Edito

    Constraints on planetary tidal dissipation from a detailed study of Kepler 91b

    Full text link
    Context. With the detection of thousands of exoplanets, characterising their dynamical evolution in detail represents a key step in the understanding of their formation. Studying the dissipation of tides occurring both in the host star and in the planets is of great relevance in order to investigate the distribution of the angular momentum occurring among the objects populating the system and to studying the evolution of the orbital parameters. From a theoretical point of view, the dissipation of tides throughout a body may be studied by relying on the so-called phase or time-lag equilibrium tides model in which the reduced tidal quality factor Q'p, or equivalently the product between the love number and the time lag (k2DeltaT), describe how efficiently tides are dissipated within the perturbed body. Constraining these factors by looking at the current configuration of the exoplanetary system is extremely challenging, and simulations accounting for the evolution of the system as a whole might help to shed some light on the mechanisms governing this process. Aims. We aim to constrain the tidal dissipation factors of hot-Jupiter-like planets by studying the orbital evolution of Kepler-91b. Methods. We firstly carried out a detailed asteroseismc characterisation of Kepler-91 and computed a dedicated stellar model using both classical and astereoseismic constraints. We then coupled the evolution of the star to the one of the planets by means of our orbital evolution code and studied the evolution of the system by accounting for tides dissipated both in the planet and in the host star. Results. We found that the maximum value for k2DeltaT (or equivalently the minimum value for Q'p) determining the efficiency of equilibrium tides dissipation occurring within Kepler-91b is 0.4 pm 0.25 s (4.5+5.8 * 10^5).Comment: accepted for publication in Astronomy & Astrophysic

    Effect of the stellar spin history on the tidal evolution of close-in planets

    Get PDF
    We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits, via star-planet tidal interactions. To do this, we used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and 0.1 M\odot M-dwarfs. We tested two stellar spin evolution profiles, one with fast initial rotation (P=1.2 day) and one with slow initial rotation (P=8 day). We tested the effect of varying the stellar and planetary dissipation and the planet's mass and initial orbital radius. Conclusions: Tidal evolution allows to differentiate the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In light of this study, we can say that differentiating between one spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin profiles. Though some conclusions can still be drawn from statistical distributions of planets around fully convective M-dwarfs. However, if the tidal evolution brings about a merger late in its history it can also entail a noticeable acceleration of the star in late ages, so that it is possible to have old stars that spin rapidly. This raises the question of better constraining the age of stars

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds

    Get PDF
    With more than 1000 hours of observation from Feb 2016 to Oct 2019, the Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star orbited by seven transiting Earth-sized planets, all well-suited for a detailed atmospheric characterization with the upcoming JWST. In this paper, we present the global results of the project. We analyzed 88 new transits and combined them with 100 previously analyzed transits, for a total of 188 transits observed at 3.6 or 4.5 μ\mum. We also analyzed 29 occultations (secondary eclipses) of planet b and eight occultations of planet c observed at 4.5 μ\mum to constrain the brightness temperatures of their daysides. We identify several orphan transit-like structures in our Spitzer photometry, but all of them are of low significance. We do not confirm any new transiting planets. We estimate for TRAPPIST-1 transit depth measurements mean noise floors of ∼\sim35 and 25 ppm in channels 1 and 2 of Spitzer/IRAC, respectively. most of this noise floor is of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC InSb arrays, and that the much better interpixel homogeneity of JWST instruments should result in noise floors as low as 10ppm, which is low enough to enable the atmospheric characterization of the planets by transit transmission spectroscopy. We construct updated broadband transmission spectra for all seven planets which show consistent transit depths between the two Spitzer channels. We identify and model five distinct high energy flares in the whole dataset, and discuss our results in the context of habitability. Finally, we fail to detect occultation signals of planets b and c at 4.5 μ\mum, and can only set 3σ\sigma upper limits on their dayside brightness temperatures (611K for b 586K for c)

    The EBLM Project I-Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the Brown Dwarf limit

    Get PDF
    This paper introduces a series of papers aiming to study the dozens of low mass eclipsing binaries (EBLM), with F, G, K primaries, that have been discovered in the course of the WASP survey. Our objects are mostly single-line binaries whose eclipses have been detected by WASP and were initially followed up as potential planetary transit candidates. These have bright primaries, which facilitates spectroscopic observations during transit and allows the study of the spin-orbit distribution of F, G, K+M eclipsing binaries through the Rossiter-McLaughlin effect. Here we report on the spin-orbit angle of WASP-30b, a transiting brown dwarf, and improve its orbital parameters. We also present the mass, radius, spin-orbit angle and orbital parameters of a new eclipsing binary, J1219-39b (1SWAPJ121921.03-395125.6, TYC 7760-484-1), which, with a mass of 95 +/- 2 Mjup, is close to the limit between brown dwarfs and stars. We find that both objects orbit in planes that appear aligned with their primaries' equatorial planes. Neither primaries are synchronous. J1219-39b has a modestly eccentric orbit and is in agreement with the theoretical mass--radius relationship, whereas WASP-30b lies above it.Comment: 12 pages, 7 figures, data in appendices, submitted to A&A (taking in account 1st referee report
    • …