56 research outputs found
Partitions of Minimal Length on Manifolds
We study partitions on three dimensional manifolds which minimize the total
geodesic perimeter. We propose a relaxed framework based on a
-convergence result and we show some numerical results. We compare our
results to those already present in the literature in the case of the sphere.
For general surfaces we provide an optimization algorithm on meshes which can
give a good approximation of the optimal cost, starting from the results
obtained using the relaxed formulation
A Multiphase Shape Optimization Problem for Eigenvalues: Qualitative Study and Numerical Results
We consider the multiphase shape optimization problem
where
is a given constant and is a bounded open set
with Lipschitz boundary. We give some new results concerning the qualitative
properties of the optimal sets and the regularity of the corresponding
eigenfunctions. We also provide numerical results for the optimal partitions
On the Blaschke-Lebesgue theorem for the Cheeger constant via areas and perimeters of inner parallel sets
The first main result presented in the paper shows that the perimeters of
inner parallel sets of planar shapes having a given constant width are minimal
for the Reuleaux triangles. This implies that the areas of inner parallel sets
and, consequently, the inverse of the Cheeger constant are also minimal for the
Reuleaux triangles. Proofs use elementary geometry arguments and are based on
direct comparisons between general constant width shapes and the Reuleaux
triangle
Volume computation for Meissner polyhedra and applications
The volume of a Meissner polyhedron is computed in terms of the lengths of
its dual edges. This allows to reformulate the Meissner conjecture regarding
constant width bodies with minimal volume as a series of explicit finite
dimensional problems. A direct consequence is the minimality of the volume of
Meissner tetrahedras among Meissner pyramids
Optimization of Neumann Eigenvalues under convexity and geometric constraints
In this paper we study optimization problems for Neumann eigenvalues
among convex domains with a constraint on the diameter or the perimeter. We
work mainly in the plane, though some results are stated in higher dimension.
We study the existence of an optimal domain in all considered cases. We also
consider the case of the unit disk, giving values of the index for which it
can be or cannot be extremal. We give some numerical examples for small values
of that lead us to state some conjectures.Comment: 23 pages, 19 figure
Polygonal Faber-Krahn inequality: Local minimality via validated computing
The main result of the paper shows that the regular -gon is a local
minimizer for the first Dirichlet-Laplace eigenvalue among -gons having
fixed area for . The eigenvalue is seen as a function of the
coordinates of the vertices in . Relying on fine regularity
results of the first eigenfunction in a convex polygon, an explicit a priori
estimate is given for the eigenvalues of the Hessian matrix associated to the
discrete problem, whose coefficients involve the solutions of some Poisson
equations with singular right hand sides. The a priori estimates, in
conjunction with certified finite element approximations of these singular PDEs
imply the local minimality for . All computations, including the
finite element computations, are realized using interval arithmetic
Semaine d'Etude Mathématiques et Entreprises 6 : Représentation des fonctions de réponse radiométrique
Ce rapport rassemble les différentes pistes de réponses apportées au problème posé par l'entreprise Kolor lors de la 6ème Semaine d'Étude Maths-Entreprises de juin 2013. Le problème porte sur la représentation de fonctions de réponse radiométrique utilisées dans de nombreux logiciels de manipulation de photographies. Une grande partie du travail effectué a consisté à comprendre le problème et ses enjeux afin de le formaliser de façon mathématique. Après une description formelle des outils envisagés, nous les évaluons par rapport aux contraintes du problème afin de déterminer leurs avantages et inconvénients. D'un point de vue pratique, les outils sont présentés dans l'objectif d'être éventuellement développés et intégrés à un logiciel existant. Nous avons donc tenté, dans la mesure du possible, de prendre en compte la simplicité de ces outils que ce soit du côté développement ou du côté utilisation. Ce rapport s'articule en six parties. Après une description pratique du problème, nous en détaillons les principales caractéristiques. Dans une troisième partie, nous décrivons les trois outils envisagés. Les deux parties suivantes constituent l'étude des outils par rapport aux contraintes du problème. Finalement nous donnons une conclusion de cette étude
Phase field approach to optimal packing problems and related Cheeger clusters
In a fixed domain of we study the asymptotic behaviour of optimal
clusters associated to -Cheeger constants and natural energies like the
sum or maximum: we prove that, as the parameter converges to the
"critical" value , optimal Cheeger clusters
converge to solutions of different packing problems for balls, depending on the
energy under consideration. As well, we propose an efficient phase field
approach based on a multiphase Gamma convergence result of Modica-Mortola type,
in order to compute -Cheeger constants, optimal clusters and, as a
consequence of the asymptotic result, optimal packings. Numerical experiments
are carried over in two and three space dimensions
- …