1,104 research outputs found
Accounting for spin fluctuations beyond LSDA in the density functional theory
We present a method to correct the magnetic properties of itinerant systems
in local spin density approximation (LSDA) and we apply it to the
ferromagnetic-paramagnetic transition under pressure in a typical itinerant
system, NiAl. We obtain a scaling of the critical fluctuations as a
function of pressure equivalent to the one obtained within Moryia's theory.
Moreover we show that in this material the role of the bandstructure is crucial
in driving the transition. Finally we calculate the magnetic moment as a
function of pressure, and find that it gives a scaling of the Curie temperature
that is in good agreement with the experiment. The method can be easily
extended to the antiferromagnetic case and applied, for instance, to the
Fe-pnictides in order to correct the LSDA magnetic moment.Comment: 7 pages, 4 figure
Effects of magnetism and doping on the electron-phonon coupling in BaFeAs
We calculate the effect of local magnetic moments on the electron-phonon
coupling in BaFeAs using the density functional perturbation
theory. We show that the magnetism enhances the total electron-phonon coupling
by , up to , still not enough to explain the
high critical temperature, but strong enough to have a non-negligible effect on
superconductivity, for instance, by frustrating the coupling with spin
fluctuations and inducing order parameter nodes. The enhancement comes mostly
from a renormalization of the electron-phonon matrix elements. We also
investigate, in the rigid band approximation, the effect of doping, and find
that versus doping does not mirror the behavior of the density of
states; while the latter decreases upon electron doping, the former does not,
and even increases slightly.Comment: 4 pages, 3 figure
In medio stat victus: Labor Demand Effects of an Increase in the Retirement Age
After falling for four decades, statutory retirement ages are increasing in most OECD countries. The labor market adjustment to these reforms has not yet been thoroughly investigated by the literature. We draw on a major pension reform that took place in Italy in December 2011 that increased the retirement age by up to six years for some categories of workers. We have access to a unique dataset validated by the Italian social security administration (INPS), which identifies in each private firm, based on an administrative exam of eligibility conditions, how many workers were locked in by the sudden increase in the retirement age, and for how long. We find that firms mostly affected by the lock in are those that were downsizing even before the policy shock. The increase in the retirement age seems to displace more middle-aged workers than young workers. Furthermore, there is not a one-to-one increase in the number of older workers in the firms where some workers were locked in by the reform. We provide tentative explanations for these results, based on the interaction between retirement, employment protection legislation and liquidity constraints of firms
Energy Gaps and Kohn Anomalies in Elemental Superconductors
The momentum and temperature dependence of the lifetimes of acoustic phonons
in the elemental superconductors Pb and Nb was determined by resonant spin-echo
spectroscopy with neutrons. In both elements, the superconducting energy gap
extracted from these measurements was found to converge with sharp anomalies
originating from Fermi-surface nesting (Kohn anomalies) at low temperatures.
The results indicate electron many-body correlations beyond the standard
theoretical framework for conventional superconductivity. A possible mechanism
is the interplay between superconductivity and spin- or charge-density-wave
fluctuations, which may induce dynamical nesting of the Fermi surface
Momentum-resolved electron-phonon interaction in lead determined by neutron resonance spin-echo spectroscopy
Neutron resonance spin-echo spectroscopy was used to monitor the temperature
evolution of the linewidths of transverse acoustic phonons in lead across the
superconducting transition temperature, , over an extended range of the
Brillouin zone. For phonons with energies below the superconducting energy gap,
a linewidth reduction of maximum amplitude eV was observed below
. The electron-phonon contribution to the phonon lifetime extracted from
these data is in satisfactory overall agreement with {\it ab-initio}
lattice-dynamical calculations, but significant deviations are found
Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFeAs family of materials
We report a combination of Fe K x-ray emission spectroscopy and
-intio calculations to investigate the correlation between structural and
magnetic degrees of freedom in CaFe(AsP). The
puzzling temperature behavior of the local moment found in rare earth-doped
CaFeAs [\textit{H. Gretarsson, et al., Phys. Rev. Lett. {\bf 110},
047003 (2013)}] is also observed in CaFe(AsP). We
explain this phenomenon based on first-principles calculations with scaled
magnetic interaction. One scaling parameter is sufficient to describe
quantitatively the magnetic moments in both CaFe(AsP) () and CaLaFeAs at all
temperatures. The anomalous growth of the local moments with increasing
temperature can be understood from the observed large thermal expansion of the
-axis lattice parameter combined with strong magnetoelastic coupling. These
effects originate from the strong tendency to form As-As dimers across the Ca
layer in the CaFeAs family of materials. Our results emphasize the
dual local-itinerant character of magnetism in Fe pnictides
Possibility of Unconventional Pairing Due to Coulomb Interaction in Fe-Based Pnictide Superconductors: Perturbative Analysis of Multi-Band Hubbard Models
Possibility of unconventional pairing due to Coulomb interaction in
iron-pnictide superconductors is studied by applying a perturbative approach to
realistic 2- and 5-band Hubbard models. The linearized Eliashberg equation is
solved by expanding the effective pairing interaction perturbatively up to
third order in the on-site Coulomb integrals. The numerical results for the
5-band model suggest that the eigenvalues of the Eliashberg equation are
sufficiently large to explain the actual high Tc for realistic values of
Coulomb interaction and the most probable pairing state is spin-singlet s-wave
without any nodes just on the Fermi surfaces, although the superconducting
order parameter changes its sign between the small Fermi pockets. On the other
hand the 2-band model is quite insufficient to explain the actual high Tc.Comment: 2 pages, 3 figures. Proceedings of the Intl. Symposium on
Fe-Oxypnictide Superconductors (Tokyo, 28-29th June 2008
Magnetism and Superconductivity in the Two-Dimensional 16 Band d-p Model for Iron-Based Superconductors
The electronic states of the Fe2As2 plane in iron-based superconductors are
investigated on the basis of the two-dimensional 16-band d-p model which
includes the Coulomb interaction on a Fe site: the intra- and inter-orbital
direct terms U and U', the Hund's coupling J and the pair-transfer J'. Using
the random phase approximation (RPA), we obtain the magnetic phase diagram
including the stripe and the incommensurate order on the U'-J plane. We also
solve the superconducting gap equation within the RPA and find that, for large
J, the most favorable pairing symmetry is extended s-wave whose order parameter
changes its sign between the hole pockets and the electron pockets, while it is
dxy-wave for small J.Comment: 4 pages, 5 figure
- …