1,552 research outputs found
The ultra-sensitive electrical detection of spin Rabi oscillation at paramagnetic defects
A short review of the pulsed electrically detected magnetic resonance (pEDMR)
experiment is presented. PEDMR allows the highly sensitive observation of
coherent electron spin motion of charge carriers and defects in semiconductors
by means of transient current measurements. The theoretical foundations, the
experimental implementation, its sensitivity and its potential with regard to
the investigation of electronic transitions in semiconductors are discussed.
For the example of the P_b center at the crystalline silicon (111) to silicon
dioxide interface it is shown experimentally how one can detect spin
Rabi-oscillation, its dephasing, coherence decays and spin-coupling effects.Comment: The manuscript has been submitted for journal publicatio
Transport and recombination through weakly coupled localized spin pairs in semiconductors during coherent spin excitation
Semi-analytical predictions for the transients of spin-dependent transport
and recombination rates through localized states in semiconductors during
coherent electron spin excitation are made for the case of weakly spin-coupled
charge carrier ensembles. The results show that the on-resonant Rabi frequency
of electrically or optically detected spin-oscillation doubles abruptly as the
strength of the resonant microwave field gamma B_1 exceeds the Larmor frequency
separation within the pair of charge carrier states between which the transport
or recombination transition takes place. For the case of a Larmor frequency
separation of the order of gamma B_1 and arbitrary excitation frequencies, the
charge carrier pairs exhibit four different nutation frequencies. From the
calculations, a simple set of equations for the prediction of these frequencies
is derived
Influence of disorder on electrically and optically detected electron spin nutation
Journal ArticleA numerical study of the influence of disorder in semiconductors on spin-Rabi nutation observed with pulsed electrically or optically detected magnetic-resonance techniques (pEDMR and pODMR, respectively ) is presented. It is shown that transient nutation signals of disordered spin ensembles differ from ordered ensembles as inhomogeneously broadened Landé-factor distributions are presented. In contrast to ordered systems, the magnitudes of spin-Rabi nutation and spin-Rabi beat nutation change significantly with a strong dependence of their ratio on the correlation of the Landé factors within the nearest-neighbor spin pairs. An interpretation of these results is given and their application for the investigation of disorder using pEDMR and pODMR is discussed
Using coherent dynamics to quantify spin-coupling within triplet-exciton/polaron complexes in organic diodes
Quantifying the spin-spin interactions which influence electronic transitions
in organic semiconductors is crucial for understanding their
magneto-optoelectronic properties. By combining a theoretical model for three
spin interactions in the coherent regime with pulsed electrically detected
magnetic resonance experiments on MEH-PPV diodes, we quantify the spin-coupling
within complexes comprising three spin-half particles. We determine that these
particles form triplet-exciton:polaron pairs, where the polaron:exciton
exchange is over 5 orders of magnitude weaker (less than 170 MHz) than that
within the exciton. This approach providing a direct spectroscopic approach for
distinguishing between coupling regimens, such as strongly bound trions, which
have been proposed to occur in organic devices.Comment: 5 pages, 4 figure
Electrical detection of 31P spin quantum states
In recent years, a variety of solid-state qubits has been realized, including
quantum dots, superconducting tunnel junctions and point defects. Due to its
potential compatibility with existing microelectronics, the proposal by Kane
based on phosphorus donors in Si has also been pursued intensively. A key issue
of this concept is the readout of the P quantum state. While electrical
measurements of magnetic resonance have been performed on single spins, the
statistical nature of these experiments based on random telegraph noise
measurements has impeded the readout of single spin states. In this letter, we
demonstrate the measurement of the spin state of P donor electrons in silicon
and the observation of Rabi flops by purely electric means, accomplished by
coherent manipulation of spin-dependent charge carrier recombination between
the P donor and paramagnetic localized states at the Si/SiO2 interface via
pulsed electrically detected magnetic resonance. The electron spin information
is shown to be coupled through the hyperfine interaction with the P nucleus,
which demonstrates the feasibility of a recombination-based readout of nuclear
spins
Room Temperature Electrical Detection of Spin Coherence in C60
An experimental demonstration of electrical detection of coherent spin motion
of weakly coupled, localized electron spins in thin Fullerene C60 films at room
temperature is presented. Pulsed electrically detected magnetic resonance
experiments on vertical photocurrents through Al/C60/ZnO samples showed that an
electron spin Rabi oscillation is reflected by transient current changes. The
nature of possible microscopic mechanisms responsible for this spin to charge
conversion as well as its implications for the readout of endohedral Fullerene
(N@C60) spin qubits are discussed.Comment: 4 pages, 3 figure
Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=1/2
We report on an analytical description of spin-dependent electronic
transition rates which are controlled by a radiation induced spin-Rabi
oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic
states (S=1/2). The oscillation components (the Fourier content) of the net
transition rates within spin-pair ensembles are derived for randomly
distributed spin resonances with account of a possible correlation between the
two distributions that correspond to the two individual pair partners. The
results presented here show that when electrically or optically detected Rabi
spectroscopy is conducted under an increasing driving field B_ 1, the Rabi
spectrum evolves from a single resonance peak at s=\Omega_R, where
\Omega_R=\gamma B_1 is the Rabi frequency (\gamma is the gyromagnetic ratio),
to three peaks at s= \Omega_R, s=2\Omega_R, and at low s<< \Omega_R. The
crossover between the two regimes takes place when \Omega_R exceeds the
expectation value \delta_0 of the difference of the Zeeman energies within the
pairs, which corresponds to the broadening of the magnetic resonance lines in
the presence of disorder caused by hyperfine field or distributions of Lande
g-factors. We capture this crossover by analytically calculating the shapes of
all three peaks at arbitrary relation between \Omega_R and \delta_0. When the
peaks are well-developed their widths are \Delta s ~ \delta_0^2/\Omega_R.Comment: 10 page, 5 figure
- …