7,451 research outputs found

    Low-energy neutrino physics and neutrino mass

    Get PDF
    Among the principal concerns in neutrino physics today are the questions of whether neutrinos are massive and, if so, whether the neutrinos emitted in a weak decay are pure or mixed quantum states. The concept of mixed neutrinos has been with us for more than 20 years, having first been introduced by Maki et al (1) and by Pontecorvo (2) following demonstration in 1962 that more than one type (flavor) of neutrino existed. After having been dormant for some time, the interest in these issues was reborn in recent years with the advent of grand unified theories, which predict nonvanishing neutrino mass and which can accommodate eutrino mixing, in a natural way. Controversial experiments also refueled the excitment (and consternation) of researchers in this endeavor

    Fine structure of beta decay endpoint spectrum

    Full text link
    We note that the fine structure at the endpoint region of the beta decay spectrum is now essentially known using neutrino oscillation data, if the mass of one neutrino is specified. This may help to identify the effects of nonzero neutrino masses in future experiments. An exact treatment of phase space kinematics is used. This work is independent of theoretical models. Additional restrictions due to the assumption of a so-called "complementary ansatz" for the neutrino mass matrix are also discussed.Comment: 9 pages, 8 figure

    Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source

    Full text link
    Rates of coherent neutrino-nucleus elastic scattering at a high-intensity stopped-pion neutrino source in various detector materials (relevant for novel low-threshold detectors) are calculated. Sensitivity of a coherent neutrino-nucleus elastic scattering experiment to new physics is also explored.Comment: 9 pages, 14 figures; minor modifications for publicatio

    A theoretical and semiemprical correction to the long-range dispersion power law of stretched graphite

    Get PDF
    In recent years intercalated and pillared graphitic systems have come under increasing scrutiny because of their potential for modern energy technologies. While traditional \emph{ab initio} methods such as the LDA give accurate geometries for graphite they are poorer at predicting physicial properties such as cohesive energies and elastic constants perpendicular to the layers because of the strong dependence on long-range dispersion forces. `Stretching' the layers via pillars or intercalation further highlights these weaknesses. We use the ideas developed by [J. F. Dobson et al, Phys. Rev. Lett. {\bf 96}, 073201 (2006)] as a starting point to show that the asymptotic C3D3C_3 D^{-3} dependence of the cohesive energy on layer spacing DD in bigraphene is universal to all graphitic systems with evenly spaced layers. At spacings appropriate to intercalates, this differs from and begins to dominate the C4D4C_4 D^{-4} power law for dispersion that has been widely used previously. The corrected power law (and a calculated C3C_3 coefficient) is then unsuccesfully employed in the semiempirical approach of [M. Hasegawa and K. Nishidate, Phys. Rev. B {\bf 70}, 205431 (2004)] (HN). A modified, physicially motivated semiempirical method including some C4D4C_4 D^{-4} effects allows the HN method to be used successfully and gives an absolute increase of about 232-3% to the predicted cohesive energy, while still maintaining the correct C3D3C_3 D^{-3} asymptotics

    Predicting Neutron Production from Cosmic-ray Muons

    Get PDF
    Fast neutrons from cosmic-ray muons are an important background to underground low energy experiments. The estimate of such background is often hampered by the difficulty of measuring and calculating neutron production with sufficient accuracy. Indeed substantial disagreement exists between the different analytical calculations performed so far, while data reported by different experiments is not always consistent. We discuss a new unified approach to estimate the neutron yield, the energy spectrum, the multiplicity and the angular distribution from cosmic muons using the Monte Carlo simulation package FLUKA and show that it gives a good description of most of the existing measurements once the appropriate corrections have been applied.Comment: 8 pages, 7 figure

    Spin-23/2- Isomer of Lu177

    Get PDF
    Investigations of the decay of the three-particle state in Lu177 with spin 23/2- performed with the crystal diffraction technique revealed evidence for three-particle states in Hf177 and rotational bands in Lu177 and in Hf177. Levels with spins to 17/2 were found in the K=7/2+ rotational band in Lu177 while the K=7/2- and K=9/2+ bands in Hf177 were found to be excited up to spin 21/2 levels. From energy and intensity measurements of the cascade, crossover, and interband transitions, the values of a number of parameters pertinent to the collective model were derived. In particular, it was verified for each of the rotational bands that the quantity (gK-gR)/Q0 was a constant within the experimental error

    The 0nbb-decay nuclear matrix elements with self-consistent short-range correlations

    Full text link
    A self-consistent calculation of nuclear matrix elements of the neutrinoless double beta decays (0nbb) of 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te and 130Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely from charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations matrix elements for the 0nbb-decay are obtained, which are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0nbb-decay matrix elements.Comment: 11 pages, 5 figure

    The Vector Analyzing Power in Elastic Electron-Proton Scattering

    Get PDF
    We compute the vector analyzing power (VAP) for the elastic scattering of transversely polarized electrons from protons at low energies using an effective theory of electrons, protons, and photons. We study all contributions through second order in E/ME/M, where EE and MM are the electron energy and nucleon mass, respectively. The leading order VAP arises from the imaginary part of the interference of one- and two-photon exchange amplitudes. Sub-leading contributions are generated by the nucleon magnetic moment and charge radius as well as recoil corrections to the leading-order amplitude. Working to O(E/M)2{\cal O}(E/M)^2, we obtain a prediction for AnA_n that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward angle epep scattering.Comment: 24 pages, 11 figures. Typos fixe
    corecore