500 research outputs found
Definability Equals Recognizability for -Outerplanar Graphs
One of the most famous algorithmic meta-theorems states that every graph
property that can be defined by a sentence in counting monadic second order
logic (CMSOL) can be checked in linear time for graphs of bounded treewidth,
which is known as Courcelle's Theorem. These algorithms are constructed as
finite state tree automata, and hence every CMSOL-definable graph property is
recognizable. Courcelle also conjectured that the converse holds, i.e. every
recognizable graph property is definable in CMSOL for graphs of bounded
treewidth. We prove this conjecture for -outerplanar graphs, which are known
to have treewidth at most .Comment: 40 pages, 8 figure
Improved self-reduction algorithms for graphs with bounded treewidth
AbstractRecent results of Robertson and Seymour show that every class that is closed under taking of minors can be recognized in O(n3) time. If there is a fixed upper bound on the treewidth of the graphs in the class, i.e., if there is a planar graph not in the class, then the class can be recognized in O(n2) time. However, this result is nonconstructive in two ways: the algorithm only decides on membership, but does not construct “a solution”, e.g., a linear ordering, decomposition or embedding; and no method is given to find the algorithms. In many cases, both nonconstructive elements can be avoided, using techniques of Brown (1989) and Fellows and Langston (1989), based on self-reduction. In this paper we introduce two techniques that help to reduce the running time of self-reduction algorithms. With the help of these techniques we show that there exist O(n2) algorithms that decide on membership and construct solutions for treewidth, pathwidth, search number, vertex search number, node search number, cutwidth, modified cutwidth, vertex separation number, gate matrix layout, and progressive black–white pebbling, where in each case the parameter k is a fixed constant
On Exploring Temporal Graphs of Small Pathwidth
We show that the Temporal Graph Exploration Problem is NP-complete, even when
the underlying graph has pathwidth 2 and at each time step, the current graph
is connected
Speeding-up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions
Dynamic programming on tree decompositions is a frequently used approach to
solve otherwise intractable problems on instances of small treewidth. In recent
work by Bodlaender et al., it was shown that for many connectivity problems,
there exist algorithms that use time, linear in the number of vertices, and
single exponential in the width of the tree decomposition that is used. The
central idea is that it suffices to compute representative sets, and these can
be computed efficiently with help of Gaussian elimination.
In this paper, we give an experimental evaluation of this technique for the
Steiner Tree problem. A comparison of the classic dynamic programming algorithm
and the improved dynamic programming algorithm that employs the table reduction
shows that the new approach gives significant improvements on the running time
of the algorithm and the size of the tables computed by the dynamic programming
algorithm, and thus that the rank based approach from Bodlaender et al. does
not only give significant theoretical improvements but also is a viable
approach in a practical setting, and showcases the potential of exploiting the
idea of representative sets for speeding up dynamic programming algorithms
Dynamic Sampling from a Discrete Probability Distribution with a Known Distribution of Rates
In this paper, we consider a number of efficient data structures for the
problem of sampling from a dynamically changing discrete probability
distribution, where some prior information is known on the distribution of the
rates, in particular the maximum and minimum rate, and where the number of
possible outcomes N is large.
We consider three basic data structures, the Acceptance-Rejection method, the
Complete Binary Tree and the Alias Method. These can be used as building blocks
in a multi-level data structure, where at each of the levels, one of the basic
data structures can be used.
Depending on assumptions on the distribution of the rates of outcomes,
different combinations of the basic structures can be used. We prove that for
particular data structures the expected time of sampling and update is
constant, when the rates follow a non-decreasing distribution, log-uniform
distribution or an inverse polynomial distribution, and show that for any
distribution, an expected time of sampling and update of
is possible, where is the
maximum rate and the minimum rate.
We also present an experimental verification, highlighting the limits given
by the constraints of a real-life setting
Cross-Composition: A New Technique for Kernelization Lower Bounds
We introduce a new technique for proving kernelization lower bounds, called
cross-composition. A classical problem L cross-composes into a parameterized
problem Q if an instance of Q with polynomially bounded parameter value can
express the logical OR of a sequence of instances of L. Building on work by
Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam
(STOC 2008) we show that if an NP-complete problem cross-composes into a
parameterized problem Q then Q does not admit a polynomial kernel unless the
polynomial hierarchy collapses. Our technique generalizes and strengthens the
recent techniques of using OR-composition algorithms and of transferring the
lower bounds via polynomial parameter transformations. We show its
applicability by proving kernelization lower bounds for a number of important
graphs problems with structural (non-standard) parameterizations, e.g.,
Chromatic Number, Clique, and Weighted Feedback Vertex Set do not admit
polynomial kernels with respect to the vertex cover number of the input graphs
unless the polynomial hierarchy collapses, contrasting the fact that these
problems are trivially fixed-parameter tractable for this parameter. We have
similar lower bounds for Feedback Vertex Set.Comment: Updated information based on final version submitted to STACS 201
Kernelization Lower Bounds By Cross-Composition
We introduce the cross-composition framework for proving kernelization lower
bounds. A classical problem L AND/OR-cross-composes into a parameterized
problem Q if it is possible to efficiently construct an instance of Q with
polynomially bounded parameter value that expresses the logical AND or OR of a
sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008)
and using a result by Fortnow and Santhanam (STOC 2008) with a refinement by
Dell and van Melkebeek (STOC 2010), we show that if an NP-hard problem
OR-cross-composes into a parameterized problem Q then Q does not admit a
polynomial kernel unless NP \subseteq coNP/poly and the polynomial hierarchy
collapses. Similarly, an AND-cross-composition for Q rules out polynomial
kernels for Q under Bodlaender et al.'s AND-distillation conjecture.
Our technique generalizes and strengthens the recent techniques of using
composition algorithms and of transferring the lower bounds via polynomial
parameter transformations. We show its applicability by proving kernelization
lower bounds for a number of important graphs problems with structural
(non-standard) parameterizations, e.g., Clique, Chromatic Number, Weighted
Feedback Vertex Set, and Weighted Odd Cycle Transversal do not admit polynomial
kernels with respect to the vertex cover number of the input graphs unless the
polynomial hierarchy collapses, contrasting the fact that these problems are
trivially fixed-parameter tractable for this parameter.
After learning of our results, several teams of authors have successfully
applied the cross-composition framework to different parameterized problems.
For completeness, our presentation of the framework includes several extensions
based on this follow-up work. For example, we show how a relaxed version of
OR-cross-compositions may be used to give lower bounds on the degree of the
polynomial in the kernel size.Comment: A preliminary version appeared in the proceedings of the 28th
International Symposium on Theoretical Aspects of Computer Science (STACS
2011) under the title "Cross-Composition: A New Technique for Kernelization
Lower Bounds". Several results have been strengthened compared to the
preliminary version (http://arxiv.org/abs/1011.4224). 29 pages, 2 figure
Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time
It is well known that many local graph problems, like Vertex Cover and
Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E)
with a given tree decomposition of width tw. However, for nonlocal problems,
like the fundamental class of connectivity problems, for a long time we did not
know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al.
(FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity
problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for
Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether
randomization is necessary to achieve this runtime; furthermore, it is
desirable to also solve counting and weighted versions (the latter without
incurring a pseudo-polynomial cost in terms of the weights).
We present two new approaches rooted in linear algebra, based on matrix rank
and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms,
also for weighted and counting versions. For example, in this time we can solve
the traveling salesman problem or count the number of Hamiltonian cycles. The
rank-based ideas provide a rather general approach for speeding up even
straightforward dynamic programming formulations by identifying "small" sets of
representative partial solutions; we focus on the case of expressing
connectivity via sets of partitions, but the essential ideas should have
further applications. The determinant-based approach uses the matrix tree
theorem for deriving closed formulas for counting versions of connectivity
problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page
The Homogeneous Broadcast Problem in Narrow and Wide Strips
Let be a set of nodes in a wireless network, where each node is modeled
as a point in the plane, and let be a given source node. Each node
can transmit information to all other nodes within unit distance, provided
is activated. The (homogeneous) broadcast problem is to activate a minimum
number of nodes such that in the resulting directed communication graph, the
source can reach any other node. We study the complexity of the regular and
the hop-bounded version of the problem (in the latter, must be able to
reach every node within a specified number of hops), with the restriction that
all points lie inside a strip of width . We almost completely characterize
the complexity of both the regular and the hop-bounded versions as a function
of the strip width .Comment: 50 pages, WADS 2017 submissio
- …