23 research outputs found
Rubber Toughened and Nanoparticle Reinforced Epoxy Composites
Epoxy resins have achieved acceptance as adhesives, coatings, and potting compounds,
but their main application is as matrix to produce reinforced composites.
However, their usefulness in this field still limited due to their brittle nature. Some
studies have been done to increase the toughness of epoxy composites, of which the
most successful one is the modification of the polymer matrix with a second toughening
phase.
Resin Transfer Molding (RTM) is one of the most important technologies to manufacture
fiber reinforced composites. In the last decade it has experimented new impulse,
due to its favorable application to produce large surface composites with good technical
properties and at relative low cost.
This research work focuses on the development of novel modified epoxy matrices,
with enhanced mechanical and thermal properties, suitable to be processed by resin
transfer molding technology, to manufacture Glass Fiber Reinforced Composites
(GFRC’s) with improved performance in comparison to the commercially available
ones.
In the first stage of the project, a neat epoxy resin (EP) was modified using two different
nano-sized ceramics: silicium dioxide (SiO2) and zirconium dioxide (ZrO2); and
micro-sized particles of silicone rubber (SR) as second filler. Series of nanocomposites
and hybrid modified epoxy resins were obtained by systematic variation of filler
contents. The rheology and curing process of the modified epoxy resins were determined
in order to define their aptness to be processed by RTM. The resulting matrices
were extensively characterized qualitatively and quantitatively to precise the effect
of each filler on the polymer properties.
It was shown that the nanoparticles confer better mechanical properties to the epoxy
resin, including modulus and toughness. It was possible to improve simultaneously
the tensile modulus and toughness of the epoxy matrix in more than 30 % and 50 %
respectively, only by using 8 vol.-% nano-SiO2 as filler. A similar performance was
obtained by nanocomposites containing zirconia. The epoxy matrix modified with 8 vol.-% ZrO2 recorded tensile modulus and toughness improved up to 36% and 45%
respectively regarding EP.
On the other hand, the addition of silicone rubber to EP and nanocomposites results
in a superior toughness but has a slightly negative effect on modulus and strength.
The addition of 3 vol.-% SR to the neat epoxy and nanocomposites increases their
toughness between 1.5 and 2.5 fold; but implies also a reduction in their tensile modulus
and strength in range 5-10%. Therefore, when the right proportion of nanoceramic
and rubber were added to the epoxy resin, hybrid epoxy matrices with fracture
toughness 3 fold higher than EP but also with up to 20% improved modulus were
obtained.
Widespread investigations were carried out to define the structural mechanisms responsible
for these improvements. It was stated, that each type of filler induces specific
energy dissipating mechanisms during the mechanical loading and fracture
processes, which are closely related to their nature, morphology and of course to
their bonding with the epoxy matrix. When both nanoceramic and silicone rubber are
involved in the epoxy formulation, a superposition of their corresponding energy release
mechanisms is generated, which provides the matrix with an unusual properties
balance.
From the modified matrices glass fiber reinforced RTM-plates were produced. The
structure of the obtained composites was microscopically analyzed to determine their
impregnation quality. In all cases composites with no structural defects (i.e. voids,
delaminations) and good superficial finish were reached. The composites were also
properly characterized. As expected the final performance of the GFRCs is strongly
determined by the matrix properties. Thus, the enhancement reached by epoxy matrices
is translated into better GFRC´s macroscopical properties. Composites with up
to 15% enhanced strength and toughness improved up to 50%, were obtained from
the modified epoxy matrices
Table1_Anti-inflammatory and antioxidant activity of astragalus polysaccharide in ulcerative colitis: A systematic review and meta-analysis of animal studies.DOCX
Background: Accumulated evidence indicates that astragalus polysaccharide (APS) may have a beneficial impact on ulcerative colitis (UC) by suppressing inflammation and decreasing oxidative stress. Nevertheless, the credibility of the evidence for this practice is unclear. Therefore, we intended to conduct a systematic review and meta-analysis of animal studies to assess the anti-inflammatory and antioxidant activity of APS when used in the treatment of UC.Methods: Electronic bibliographic databases including PubMed, EMBASE, Web of Science, Chinese Biomedical Literature (CBM), Wanfang Database, CQVIP Database and China National Knowledge Infrastructure (CNKI) were retrieved for relevant animal studies. The methodological quality of animal studies was evaluated based on the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE’s RoB tool). A meta-analysis was performed according to the Cochrane Handbook for Systematic Reviews of Interventions by using STATA 12.0 software. This study was registered with PROSPERO, number CRD42021272595.Results: Twenty qualified publications involving 591 animals were included in this study. There was a significant association of APS with levels of disease activity index (DAI), colon macroscopic damage index (CMDI), colon histopathologic score (CHS), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), superoxide dismutase (SOD) and malondialdehyde (MDA) compared with that in the control group. Sensitivity analysis that eliminated one study at each stage did not change these results. Egger’s test and funnel plot showed that publication bias was existed.Conclusion: In this meta-analysis, APS treatment significantly mitigated colonic damage by reducing the levels of MPO, TNF-α, IL-6, IL-1β, and MDA and recovering the SOD activity. These results demonstrated a protective role of APS in the treatment of UC and showed that the anti-inflammatory and antioxidant activity were implicated in the underlying mechanisms. Hence, APS may represent a promising candidate for treating UC. However, due to potential publication bias, a cautious interpretation is needed.Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/).</p
Table2_Anti-inflammatory and antioxidant activity of astragalus polysaccharide in ulcerative colitis: A systematic review and meta-analysis of animal studies.XLSX
Background: Accumulated evidence indicates that astragalus polysaccharide (APS) may have a beneficial impact on ulcerative colitis (UC) by suppressing inflammation and decreasing oxidative stress. Nevertheless, the credibility of the evidence for this practice is unclear. Therefore, we intended to conduct a systematic review and meta-analysis of animal studies to assess the anti-inflammatory and antioxidant activity of APS when used in the treatment of UC.Methods: Electronic bibliographic databases including PubMed, EMBASE, Web of Science, Chinese Biomedical Literature (CBM), Wanfang Database, CQVIP Database and China National Knowledge Infrastructure (CNKI) were retrieved for relevant animal studies. The methodological quality of animal studies was evaluated based on the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE’s RoB tool). A meta-analysis was performed according to the Cochrane Handbook for Systematic Reviews of Interventions by using STATA 12.0 software. This study was registered with PROSPERO, number CRD42021272595.Results: Twenty qualified publications involving 591 animals were included in this study. There was a significant association of APS with levels of disease activity index (DAI), colon macroscopic damage index (CMDI), colon histopathologic score (CHS), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), superoxide dismutase (SOD) and malondialdehyde (MDA) compared with that in the control group. Sensitivity analysis that eliminated one study at each stage did not change these results. Egger’s test and funnel plot showed that publication bias was existed.Conclusion: In this meta-analysis, APS treatment significantly mitigated colonic damage by reducing the levels of MPO, TNF-α, IL-6, IL-1β, and MDA and recovering the SOD activity. These results demonstrated a protective role of APS in the treatment of UC and showed that the anti-inflammatory and antioxidant activity were implicated in the underlying mechanisms. Hence, APS may represent a promising candidate for treating UC. However, due to potential publication bias, a cautious interpretation is needed.Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/).</p
DataSheet1_Anti-inflammatory and antioxidant activity of astragalus polysaccharide in ulcerative colitis: A systematic review and meta-analysis of animal studies.PDF
Background: Accumulated evidence indicates that astragalus polysaccharide (APS) may have a beneficial impact on ulcerative colitis (UC) by suppressing inflammation and decreasing oxidative stress. Nevertheless, the credibility of the evidence for this practice is unclear. Therefore, we intended to conduct a systematic review and meta-analysis of animal studies to assess the anti-inflammatory and antioxidant activity of APS when used in the treatment of UC.Methods: Electronic bibliographic databases including PubMed, EMBASE, Web of Science, Chinese Biomedical Literature (CBM), Wanfang Database, CQVIP Database and China National Knowledge Infrastructure (CNKI) were retrieved for relevant animal studies. The methodological quality of animal studies was evaluated based on the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE’s RoB tool). A meta-analysis was performed according to the Cochrane Handbook for Systematic Reviews of Interventions by using STATA 12.0 software. This study was registered with PROSPERO, number CRD42021272595.Results: Twenty qualified publications involving 591 animals were included in this study. There was a significant association of APS with levels of disease activity index (DAI), colon macroscopic damage index (CMDI), colon histopathologic score (CHS), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), superoxide dismutase (SOD) and malondialdehyde (MDA) compared with that in the control group. Sensitivity analysis that eliminated one study at each stage did not change these results. Egger’s test and funnel plot showed that publication bias was existed.Conclusion: In this meta-analysis, APS treatment significantly mitigated colonic damage by reducing the levels of MPO, TNF-α, IL-6, IL-1β, and MDA and recovering the SOD activity. These results demonstrated a protective role of APS in the treatment of UC and showed that the anti-inflammatory and antioxidant activity were implicated in the underlying mechanisms. Hence, APS may represent a promising candidate for treating UC. However, due to potential publication bias, a cautious interpretation is needed.Systematic Review Registration: (https://www.crd.york.ac.uk/PROSPERO/).</p
Copper Tolerance and Biosorption of <i>Saccharomyces cerevisiae</i> during Alcoholic Fermentation
<div><p>At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of <i>Saccharomyces cerevisiae</i> (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu<sup>2+</sup> were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu<sup>2+</sup> for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that <i>Saccharomyces cerevisiae</i> strain BH8 has good tolerance and adsorption of Cu, and reduces Cu<sup>2+</sup> concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.</p></div
Copper ion concentration (A, Control; B, strain A; C, strain B; D, strain F) of MSM during fermentation for <i>S</i>. <i>cerevisiae</i> strains in MSM with 0 (control) (A*, B*, F*), 0.50 (A*, B**, F***), 1.00 (A*, B**, F***) and 1.50 mM (A*, B**, F***) Cu<sup>2+</sup>.
<p>(*, **, and *** represent different statistical significance level, CI = 0.95, n = 3).</p
Fermentation must reducing sugar (A, strain A; B, strain B; C, strain F) and fermentation ethanol concentration (D, strain A; E, strain B; F, strain F) for <i>S. cerevisiae</i> strains in MSM with 0 (control) (A*, B*, F*), 0.50 (A*, B**, F***), 1.00 (A*, B**, F***) and 1.50 mM (A*, B**, F***) Cu<sup>2+</sup>.
<p>(*, **, and *** represent different statistical significance level, CI = 0.95, n = 3).</p
Intracellular images (×20000) of <i>S</i>. <i>cerevisiae</i> strain BH8 before (a) and after (b, c) culturing in MSM with 1.50 mM Cu<sup>2+</sup> for 48 h; CW: cell wall; N: cell nuclear; PM: plasma membrane; V: vacuole.
<p>Intracellular images (×20000) of <i>S</i>. <i>cerevisiae</i> strain BH8 before (a) and after (b, c) culturing in MSM with 1.50 mM Cu<sup>2+</sup> for 48 h; CW: cell wall; N: cell nuclear; PM: plasma membrane; V: vacuole.</p
Removal ratio η (A) and adsorption efficiency <i>A</i> (B) of Cu<sup>2+</sup> on <i>S</i>. <i>cerevisiae</i> strains AWRI R2 (A), BH8 (B) and Freddo (F) at the end of alcoholic fermentation in MSM with 0.50, 1.00 and 1.50 mM Cu<sup>2+</sup>.
<p>Removal ratio η (A) and adsorption efficiency <i>A</i> (B) of Cu<sup>2+</sup> on <i>S</i>. <i>cerevisiae</i> strains AWRI R2 (A), BH8 (B) and Freddo (F) at the end of alcoholic fermentation in MSM with 0.50, 1.00 and 1.50 mM Cu<sup>2+</sup>.</p