6,503 research outputs found
Application of pressurized liquid nitrogen inside parametric-amplifier structures for input-noise-temperature improvement
Pressurized liquid nitrogen inside parametric amplifier structures for input, noise, and temperature improvement
Development of UHF radiometer
A wideband multifrequency UHF radiometer was initially developed to operate in the 500 to 710 MHz frequency range for the remote measurement of ocean water salinity. However, radio-frequency interference required a reconfiguration to operate in the single-frequency radio astronomy band of 608 to 614 MHz. Details of the radiometer development and testing are described. Flight testing over variable terrain provided a performance comparison of the UHF radiometer with an L-band radiometer for remote sensing of geophysical parameters. Although theoretically more sensitive, the UHF radiometer was found to be less desirable in practice than the L-band radiometer
Quantum Darwinism in quantum Brownian motion: the vacuum as a witness
We study quantum Darwinism -- the redundant recording of information about a
decohering system by its environment -- in zero-temperature quantum Brownian
motion. An initially nonlocal quantum state leaves a record whose redundancy
increases rapidly with its spatial extent. Significant delocalization (e.g., a
Schroedinger's Cat state) causes high redundancy: many observers can measure
the system's position without perturbing it. This explains the objective (i.e.
classical) existence of einselected, decoherence-resistant pointer states of
macroscopic objects.Comment: 5 page
Cosmological Effects in Planetary Science
In an earlier discussion of the planetary flyby anomaly, a preliminary assessment of cosmological effects upon planetary orbits exhibiting the flyby anomaly was made. A more comprehensive investigation has since been published, although it was directed at the Pioneer anomaly and possible effects of universal rotation. The general subject of Solar System anomalies will be examined here from the point of view of planetary science
Dilute Bose gases interacting via power-law potentials
Neutral atoms interact through a van der Waals potential which asymptotically
falls off as r^{-6}. In ultracold gases, this interaction can be described to a
good approximation by the atom-atom scattering length. However, corrections
arise that depend on the characteristic length of the van der Waals potential.
We parameterize these corrections by analyzing the energies of two- and
few-atom systems under external harmonic confinement, obtained by numerically
and analytically solving the Schrodinger equation. We generalize our results to
particles interacting through a longer-ranged potential which asymptotically
falls off as r^{-4}.Comment: 7 pages, 4 figure
Quasi-one-dimensional Bose gases with large scattering length
Bose gases confined in highly-elongated harmonic traps are investigated over
a wide range of interaction strengths using quantum Monte Carlo techniques. We
find that the properties of a Bose gas under tight transverse confinement are
well reproduced by a 1d model Hamiltonian with contact interactions. We point
out the existence of a unitary regime, where the properties of the quasi-1d
Bose gas become independent of the actual value of the 3d scattering length. In
this unitary regime, the energy of the system is well described by a hard rod
equation of state. We investigate the stability of quasi-1d Bose gases with
positive and negative 3d scattering length.Comment: 5 pages, 3 figure
Theory of Coupled Multipole Moments Probed by X-ray Scattering in CeB
A minimal model for multipole orders in CeB shows that degeneracy of the
quadrupole order parameters and strong spin-orbit coupling lead to peculiar
temperature and magnetic-field dependences of the X-ray reflection intensity at
superlattice Bragg points. Furthermore, the intensity depends sensitively on
the surface direction. These theoretical results explain naturally recent X-ray
experiments in phases II and III of CeB. It is predicted that under weak
magnetic field perpendicular to the (111) surface, the reflection intensity
should change non-monotonically as a function of temperature.Comment: 4 pages, 5 figure
Optimization of ground and excited state wavefunctions and van der Waals clusters
A quantum Monte Carlo method is introduced to optimize excited state trial
wavefunctions. The method is applied in a correlation function Monte Carlo
calculation to compute ground and excited state energies of bosonic van der
Waals clusters of upto seven particles. The calculations are performed using
trial wavefunctions with general three-body correlations
- …