25,229 research outputs found
Fostering Student Agency to Build a Whole Child, Whole School, Whole Community Approach
In this practitioner perspective, we explore the concept of student agency through the implementation of a student government association in a laboratory middle school. Interviews with a social studies teacher and her students offer perspectives of the impact of student voice and choice for student experiences. We describe three major lessons learned through this implementation process: students learn to have healthy conflict and cooperative skills; students learn the appropriate processes to enact change in a democratic society; and students learn to conduct service for their peers, school, and community
Relational semantics of linear logic and higher-order model-checking
In this article, we develop a new and somewhat unexpected connection between
higher-order model-checking and linear logic. Our starting point is the
observation that once embedded in the relational semantics of linear logic, the
Church encoding of any higher-order recursion scheme (HORS) comes together with
a dual Church encoding of an alternating tree automata (ATA) of the same
signature. Moreover, the interaction between the relational interpretations of
the HORS and of the ATA identifies the set of accepting states of the tree
automaton against the infinite tree generated by the recursion scheme. We show
how to extend this result to alternating parity automata (APT) by introducing a
parametric version of the exponential modality of linear logic, capturing the
formal properties of colors (or priorities) in higher-order model-checking. We
show in particular how to reunderstand in this way the type-theoretic approach
to higher-order model-checking developed by Kobayashi and Ong. We briefly
explain in the end of the paper how his analysis driven by linear logic results
in a new and purely semantic proof of decidability of the formulas of the
monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte
Operational Semantics of Process Monitors
CSPe is a specification language for runtime monitors that can directly
express concurrency in a bottom-up manner that composes the system from
simpler, interacting components. It includes constructs to explicitly flag
failures to the monitor, which unlike deadlocks and livelocks in conventional
process algebras, propagate globally and aborts the whole system's execution.
Although CSPe has a trace semantics along with an implementation demonstrating
acceptable performance, it lacks an operational semantics. An operational
semantics is not only more accessible than trace semantics but also
indispensable for ensuring the correctness of the implementation. Furthermore,
a process algebra like CSPe admits multiple denotational semantics appropriate
for different purposes, and an operational semantics is the basis for
justifying such semantics' integrity and relevance. In this paper, we develop
an SOS-style operational semantics for CSPe, which properly accounts for
explicit failures and will serve as a basis for further study of its
properties, its optimization, and its use in runtime verification
Effects of network topology on the OpenAnswer’s Bayesian model of peer assessment
The paper investigates if and how the topology of the peer assessment network can affect the performance of the Bayesian model adopted in Ope
nAnswer. Performance is evaluated in terms of the comparison of predicted grades with actual teacher’s grades. The global network is built by interconnecting smaller subnetworks, one for each student, where intra subnetwork nodes represent student's characteristics, and peer assessment assignments make up inter subnetwork connections and determine evidence propagation. A possible subset of teacher graded answers is dynamically determined by suitable selec
tion and stop rules. The research questions addressed are: RQ1) “does the topology (diameter) of the network negatively influence the precision of predicted
grades?”̀ in the affirmative case, RQ2) “are we able to reduce the negative effects of high diameter networks through an appropriate choice of the subset of
students to be corrected by the teacher?” We show that RQ1) OpenAnswer is less effective on higher diameter topologies, RQ2) this can be avoided if the subset of corrected students is chosen considering the network topology
Obesity and Appetite Control
Obesity is one of the major challenges to human health worldwide; however, there are currently no effective pharmacological interventions for obesity. Recent studies have improved our understanding of energy homeostasis by identifying sophisticated neurohumoral networks which convey signals between the brain and gut in order to control food intake. The hypothalamus is a key region which possesses reciprocal connections between the higher cortical centres such as reward-related limbic pathways, and the brainstem. Furthermore, the hypothalamus integrates a number of peripheral signals which modulate food intake and energy expenditure. Gut hormones, such as peptide YY, pancreatic polypeptide, glucagon-like peptide-1, oxyntomodulin, and ghrelin, are modulated by acute food ingestion. In contrast, adiposity signals such as leptin and insulin are implicated in both short- and long-term energy homeostasis. In this paper, we focus on the role of gut hormones and their related neuronal networks (the gut-brain axis) in appetite control, and their potentials as novel therapies for obesity
The development and neural basis of referential gaze perception
Infants are sensitive to the referential information conveyed by others’ eye gaze, which could be one of the developmental foundations of theory of mind. To investigate the neural correlates of gaze–object relations, we recorded ERPs from adults and 9-month-old infants while they watched scenes containing gaze shifts either towards or away from the location of a preceding object. In adults, object-incongruent gaze shifts elicited enhanced ERP amplitudes over the occipito-temporal area (N330). In infants, a similar posterior ERP component (N290) was greater for object-incongruent gaze shifts, which suggests that by the age of 9 months infants encode referential information of gaze in a similar way to adults. In addition, in infants we observed an early frontal ERP component (anterior N200), which showed higher amplitude in response to the perception of object-congruent gaze shifts. This component may reflect fast-track processing of socially relevant information, such as the detection of communicative or informative situations, and could form a developmental foundation for attention sharing, social learning and theory of mind
Studying the High-Energy Gamma-Ray Sky with Glast
Building on the success of the Energetic Gamma Ray Experiment Telescope
(EGRET) on the Compton Gamma Ray Observatory, the Gamma-ray Large Area Space
Telescope (GLAST) will make a major step in the study of such subjects as
blazars, gamma-ray bursts, the search for dark matter, supernova remnants,
pulsars, diffuse radiation, and unidentified high-energy sources. The
instrument will be built on new and mature detector technologies such as
silicon strip detectors, low-power low-noise LSI, and a multilevel data
acquisition system. GLAST is in the research and development phase, and one
full tower (of 25 total) is now being built in collaborating institutes. The
prototype tower will be tested thoroughly at SLAC in the fall of 1999.Comment: 6 pages with 2 figures, to appear in the proceedings of the COSPAR 98
Symposium E 1.1, postscript file also available at
http://glast.gsfc.nasa.gov/COSPAR
Sensitivity of double resonance alignment magnetometers
We present an experimental study of the intrinsic magnetometric sensitivity
of an optical/rf-frequency double resonance magnetometer in which linearly
polarized laser light is used in the optical pumping and detection processes.
We show that a semi-empirical model of the magnetometer can be used to describe
the magnetic resonance spectra. Then, we present an efficient method to predict
the optimum operating point of the magnetometer, i.e., the light power and rf
Rabi frequency providing maximum magnetometric sensitivity. Finally, we apply
the method to investigate the evolution of the optimum operating point with
temperature. The method is very efficient to determine relaxation rates and
thus allowed us to determine the three collisional disalignment cross sections
for the components of the alignment tensor. Both first and second harmonic
signals from the magnetometer are considered and compared
- …