414 research outputs found

    Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method

    Full text link
    We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the Global Positioning System (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50,000km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.Comment: See also Supplementary Information located in ancillary file

    A study of atmospheric neutrinos with the IMB detector

    Get PDF
    A sample of 401 contained neutrino interactions collected in the 3300 metric ton fiducial mass IMB detector was used to study neutrino oscillations, geomagnetic modulation of the flux and to search for point sources. The majority of these events are attributed to neutrino interactions. For the most part, these neutrinos are believed to originate as tertiary products of cosmic ray interactions in the atmosphere. The neutrinos are a mixture of v sub e and v sub micron

    Assessing the Impact of Vertical Land Motion on Twentieth Century Global Mean Sea Level Estimates

    Get PDF
    Near-global and continuous measurements from satellite altimetry have provided accurate estimates of global mean sea level in the past two decades. Extending these estimates further into the past is a challenge using the historical tide gauge records. Not only is sampling nonuniform in both space and time, but tide gauges are also affected by vertical land motion (VLM) that creates a relative sea level change not representative of ocean variability. To allow for comparisons to the satellite altimetry estimated global mean sea level (GMSL), typically the tide gauges are corrected using glacial isostatic adjustment (GIA) models. This approach, however, does not correct other sources of VLM that remain in the tide gauge record. Here we compare Global Positioning System (GPS) VLM estimates at the tide gauge locations to VLM estimates from GIA models, and assess the influence of non-GIA-related VLM on GMSL estimates. We find that the tide gauges, on average, are experiencing positive VLM (i.e., uplift) after removing the known effect of GIA, resulting in an increase of 0.24 ± 0.08 mm yr−1 in GMSL trend estimates from 1900 to present when using GPS-based corrections. While this result is likely dependent on the subset of tide gauges used and the actual corrections used, it does suggest that non-GIA VLM plays a significant role in twentieth century estimates of GMSL. Given the relatively short GPS records used to obtain these VLM estimates, we also estimate the uncertainty in the GMSL trend that results from limited knowledge of non-GIA-related VLM

    Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms.</p> <p>Results</p> <p>From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in <it>Escherichia coli</it>. Further characterization showed that two enzymes showed significant activity on <it>p</it>-nitrophenyl-α-<smcaps>L</smcaps>-arabinofuranoside, one enzyme had significant activity against <it>p</it>-nitrophenyl-β-<smcaps>D</smcaps>-glucopyranoside, and one enzyme showed significant activity against <it>p</it>-nitrophenyl-β-<smcaps>D</smcaps>-xylopyranoside. Enzymes were also tested in the presence of ionic liquids.</p> <p>Conclusions</p> <p>Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.</p

    Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise

    Get PDF
    Background: Inbred individuals reared in controlled environments display considerable variance in many complex traits but the underlying cause of this intangible variation has been an enigma. Here we show that two modifiers of epigenetic gene silencing play a critical role in the process.Results: Inbred mice heterozygous for a null mutation in DNA methyltransferase 3a (Dnmt3a) or tripartite motif protein 28 (Trim28) show greater coefficients of variance in body weight than their wild-type littermates. Trim28 mutants additionally develop metabolic syndrome and abnormal behavior with incomplete penetrance. Genome-wide gene expression analyses identified 284 significantly dysregulated genes in Trim28 heterozygote mutants compared to wild-type mice, with Mas1, which encodes a G-protein coupled receptor implicated in lipid metabolism, showing the greatest average change in expression (7.8-fold higher in mutants). This gene also showed highly variable expression between mutant individuals.Conclusions: These studies provide a molecular explanation of developmental noise in whole organisms and suggest that faithful epigenetic control of transcription is central to suppressing deleterious levels of phenotypic variation. These findings have broad implications for understanding the mechanisms underlying sporadic and complex disease in humans

    Experimental limits on nucleon decay and ΔB=2 processes

    Full text link
    Results from the IMB collabration to detect possible proton decay in a salt mine near Cleveland, Ohio are presented. Detection apparatus is described.(AIP)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87900/2/1_1.pd

    GNSS multi-frequency receiver single-satellite measurement validation method

    Get PDF
    A method is presented for real-time validation of GNSS measurements of a single receiver, where data from each satellite are independently processed. A geometry- free observation model is used with a reparameterized form of the unknowns to overcome rank deficiency of the model. The ionosphere error and non-constant biases such as multipath are assumed changing relatively smoothly as a function of time. Data validation and detection of errors are based on statistical testing of the observation residuals using the detection–identification–adaptation approach. The method is applicable to any GNSS with any number of frequencies. The performance of validation method was evaluated using multi-frequency data from three GNSS (GPS, GLONASS, and Galileo) that span 3 days in a test site at Curtin University, Australia. Performance of the method in detection and identification of outliers in code observations, and detection of cycle slips in phase data were examined. Results show that the success rates vary according to precision of observations and their number as well as size of the errors. The method capability is demonstrated when processing four IOV Galileo satellites in a single-point-positioning mode and in another test by comparing its performance with Bernese software in detection of cycle slips in precise point-positioning processing using GPS data
    • …
    corecore