309 research outputs found

    Combinatorial Route to Algebra: The Art of Composition & Decomposition

    Get PDF
    We consider a general concept of composition and decomposition of objects, and discuss a few natural properties one may expect from a reasonable choice thereof. It will be demonstrated how this leads to multiplication and co- multiplication laws, thereby providing a generic scheme furnishing combinatorial classes with an algebraic structure. The paper is meant as a gentle introduction to the concepts of composition and decomposition with the emphasis on combinatorial origin of the ensuing algebraic constructions.Comment: 20 pages, 6 figure

    Combinatorial Solutions to Normal Ordering of Bosons

    Full text link
    We present a combinatorial method of constructing solutions to the normal ordering of boson operators. Generalizations of standard combinatorial notions - the Stirling and Bell numbers, Bell polynomials and Dobinski relations - lead to calculational tools which allow to find explicitly normally ordered forms for a large class of operator functions.Comment: Presented at 14th Int. Colloquium on Integrable Systems, Prague, Czech Republic, 16-18 June 2005. 6 pages, 11 reference

    Dobiński relations and ordering of boson operators

    Get PDF
    We introduce a generalization of the Dobiński relation, through which we define a family of Bell-type numbers and polynomials. Such generalized Dobiński relations are coherent state matrix elements of expressions involving boson ladder operators. This may be used in order to obtain normally ordered forms of polynomials in creation and annihilation operators, both if the latter satisfy canonical and deformed commutation relations

    Combinatorial coherent states via normal ordering of bosons

    Full text link
    We construct and analyze a family of coherent states built on sequences of integers originating from the solution of the boson normal ordering problem. These sequences generalize the conventional combinatorial Bell numbers and are shown to be moments of positive functions. Consequently, the resulting coherent states automatically satisfy the resolution of unity condition. In addition they display such non-classical fluctuation properties as super-Poissonian statistics and squeezing.Comment: 12 pages, 7 figures. 20 references. To be published in Letters in Mathematical Physic

    Exponential Operators, Dobinski Relations and Summability

    Get PDF
    We investigate properties of exponential operators preserving the particle number using combinatorial methods developed in order to solve the boson normal ordering problem. In particular, we apply generalized Dobinski relations and methods of multivariate Bell polynomials which enable us to understand the meaning of perturbation-like expansions of exponential operators. Such expansions, obtained as formal power series, are everywhere divergent but the Pade summation method is shown to give results which very well agree with exact solutions got for simplified quantum models of the one mode bosonic systems.Comment: Presented at XIIth Central European Workshop on Quantum Optics, Bilkent University, Ankara, Turkey, 6-10 June 2005. 4 figures, 6 pages, 10 reference

    Heisenberg-Weyl algebra revisited: Combinatorics of words and paths

    Full text link
    The Heisenberg-Weyl algebra, which underlies virtually all physical representations of Quantum Theory, is considered from the combinatorial point of view. We provide a concrete model of the algebra in terms of paths on a lattice with some decomposition rules. We also discuss the rook problem on the associated Ferrers board; this is related to the calculus in the normally ordered basis. From this starting point we explore a combinatorial underpinning of the Heisenberg-Weyl algebra, which offers novel perspectives, methods and applications.Comment: 5 pages, 3 figure

    Combinatorial Physics, Normal Order and Model Feynman Graphs

    Full text link
    The general normal ordering problem for boson strings is a combinatorial problem. In this note we restrict ourselves to single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, such as Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. Finally we show that a graphical representation of these combinatorial numbers leads to sets of model field theories, for which the graphs may be interpreted as Feynman diagrams corresponding to the bosons of the theory. The generating functions are the generators of the classes of Feynman diagrams.Comment: 9 pages, 4 figures. 12 references. Presented at the Symposium 'Symmetries in Science XIII', Bregenz, Austria, 200

    Proportional valve with a piezoelectric actuator

    Full text link
    The article concerns a slotted proportional valve for use in pneumatic and hydraulic systems. There is a growing demand for both hydraulic and pneumatic ultrafast proportional valves. The conducted analysis of literature confirms the lack of such solutions for proportional valves. The currently used pneumatic systems for selection and segregation of parts and objects require ultrafast valves. The presented solution for the proportional valve can significantly improve and accelerate this type of technological processes. Furthermore, fast proportional valves can be successfully used for positional control of pneumatic and hydraulic drives. The article presents the design of a slotted divide valve and sets the maximum mass flow rate for service roads
    corecore