10,133 research outputs found

    Kinetics of Photon Radiation off an e-e+ Plasma created from the Vacuum in a Strong Laser Field

    Full text link
    We consider the one-photon annihilation mechanism in a electron - positron quasiparticle plasma (EPP) created from the vacuum in a strong subcritical laser field due to the dynamical Schwinger mechanism. On the basis of a kinetic theory approach we show that the secondary photons have a radiation spectrum proportional to 1/k (flicker noise). This effect is very small for EPP excitations in the optical spectrum but can reach quite observable values in the gamma - ray region.Comment: 6 page

    On NCQFT and dimensionless insertions

    Full text link
    In these notes, we aim at a precise definition of the tree level action for the noncommutative scalar and gauge field theories on four-dimensional canonically deformed Euclidean space. As tools to achieve this goal we employ power counting and normalization conditions.Comment: 10 page

    Cluster virial expansion for quark and nuclear matter

    Full text link
    We employ the Φ\Phi- derivable approach to many particle systems with strong correlations that can lead to the formation of bound states (clusters) of different size. We define a generic form of Φ\Phi- functionals that is fully equivalent to a selfconsistent cluster virial expansion up to the second virial coefficient for interactions among the clusters. As examples we consider nuclei in nuclear matter and hadrons in quark matter, with particular attention to the case of the deuterons in nuclear matter and mesons in quark matter. We derive a generalized Beth-Uhlenbeck equation of state, where the quasiparticle virial expansion is extended to include arbitrary clusters. The approach is applicable to nonrelativistic potential models of nuclear matter as well as to relativistic field theoretic models of quark matter. It is particularly suited for a description of cluster formation and dissociation in hot, dense matter.Comment: 8 pages, 5 figures, Proceedings of the XXII International Baldin Seminar on High Energy Physics Problems, 15-20 September 2014, JINR Dubna, Russi

    Nonlocal quark model beyond mean field and QCD phase transition

    Full text link
    A nonlocal chiral quark model is consistently extended beyond mean field using a strict 1/Nc expansion scheme. The parameters of the nonlocal model are refitted to the physical values of the pion mass and the weak pion decay constant. The size of the 1/Nc correction to the quark condensate is carefully studied in the nonlocal and the usual local Nambu-Jona-Lasinio models. It is found that even the sign of the corrections can be different. This can be attributed to the mesonic cut-off of the local model. It is also found that the 1/Nc corrections lead to a lowering of the temperature of the chiral phase transition in comparison with the mean-field result. On the other hand, near the phase transition the 1/Nc expansion breaks down and a non-perturbative scheme for the inclusion of mesonic correlations is needed in order to describe the phase transition point.Comment: 4 pages, 4 figures, talk at the 3rd Joint International Hadron Structure'09 Conference, Tatranska Strba (Slovak Republic), Aug. 30-Sept. 3, 200

    Mapping Deconfinement with a Compact Star Phase Diagram

    Get PDF
    We have found correlations between properties of the equation of state for stellar matter with a phase transition at supernuclear densities and two characteristic features of a "phase diagram" for rotating compact stars in the angular velocity - baryon number plane: 1) the critical dividing line between mono- and two-phase star configurations and 2) the maximum mass line. The second line corresponds to the minimum mass function for black hole candidates whereas the first one is observable by a population statistics, e.g. for Z-sources in low-mass X-ray binaries. The observation of a population gap in the mass distribution for the latter is suggested as an astrophysical verification of the existence of a first order phase transition in QCD at high densities such as the deconfinement.Comment: 4 pages, 2 figures, Contribution to Proceedings of Quark Matter 2002, Nantes, July 18 - 24, 200

    Timing evolution of accreting strange stars

    Get PDF
    It has been suggested that the QPO phenomenon in LMXB's could be explained when the central compact object is a strange star. In this work we investigate within a standard model for disk accretion whether the observed clustering of spin frequencies in a narrow band is in accordance with this hypothesis. We show that frequency clustering occurs for accreting strange stars when typical values of the parameters of magnetic field initial strength and decay time, accretion rate are chosen. In contrast to hybrid star accretion no mass clustering effect is found.Comment: 10 pages, 3 figures, version accepted for publication in New Astronom

    Mott effect at the chiral phase transition and anomalous J/Psi suppression

    Get PDF
    We investigate the in-medium modification of the charmonium break-up processes due to the Mott effect for light (pi) and open-charm (D, D*) mesons at the chiral/deconfinement phase transition. A model calculation for the process J/Psi + pi -> D + \bar D* + h.c. is presented which demonstrates that the Mott effect for the D-mesons leads to a threshold effect in the thermal averaged break-up cross section. This effect is suggested as an explanation of the phenomenon of anomalous J/Psi suppression in the CERN NA50 experiment.Comment: 9 pages, 3 figures; final version to appear in Phys. Lett.
    corecore