6,510 research outputs found

    Making Clean Energy with a Kerr Black Hole: a Tokamak Model for Gamma-Ray Bursts

    Full text link
    In this paper we present a model for making clean energy with a Kerr black hole. Consider a Kerr black hole with a dense plasma torus spinning around it. A toroidal electric current flows on the surface of the torus, which generates a poloidal magnetic field outside the torus. On the surface of the tours the magnetic field is parallel to the surface. The closed magnetic field lines winding around the torus compress and confine the plasma in the torus, as in the case of tokamaks. Though it is unclear if such a model is stable, we look into the consequences if the model is stable. If the magnetic field is strong enough, the baryonic contamination from the plasma in the torus is greatly suppressed by the magnetic confinement and a clean magnetosphere of electron-positron pairs is built up around the black hole. Since there are no open magnetic field lines threading the torus and no accretion, the power of the torus is zero. If some magnetic field lines threading the black hole are open and connect with loads, clean energy can be extracted from the Kerr black hole by the Blandford-Znajek mechanism. The model may be relevant to gamma-ray bursts. The energy in the Poynting flux produced by the Blandford-Znajek mechanism is converted into the kinetic energy of the electron-positron pairs in the magnetosphere around the black hole, which generates two oppositely directed jets of electron-positron pairs with super-high bulk Lorentz factors. The jets collide and interact with the interstellar medium, which may produce gamma-ray bursts and the afterglows.Comment: 14 pages, 1 figure, accepted by Ap

    To the Lighthouse

    Full text link
    The extreme hypothesis that essentially all types of ultrarelativistic outflow -- specifically AGN jets, pulsar wind nebulae and GRB --are electromagnetic, rather than gas dynamical, phenomena is considered. Electromagnetic flows are naturally anisotropic and self-collimating so as to produce jet-like features. The relativistic force-free description of these flows, which is simpler than the relativistic MHD description, is explained. It is suggested that the magnetic field associated with AGN jets and GRB is quite extensively distributed in latitude, without necessarily increasing by much the total power. It is also proposed that the observed emission from these sources traces out regions of high current density where global instabilities drive a turbulence spectrum that is ultimately responsible for the particle acceleration and the synchrotron, inverse Compton and synchro-Compton emission. The direct extraction of spin energy from a black hole is re-examined and an electromagnetic model of GRB explosions is developed. It is also suggested that some GRB ``lighthouses'' be identified with accretion-induced collapse of a neutron star to form a black hole in a binary system.Comment: 25 pages, 2 figures. To appear in "Lighthouses of the Universe" Proc. Symposium held in Garching, Germany (Aug 6-9 2001) ed. M. Gilfanov, R. Sunyaev et al. Berlin:Springer. Revised version, correcting minor error

    Current Issues

    Get PDF
    Cosmic explosions are observed in many astrophysical environments. They range in scale from hydromagnetic instabilities in the terrestrial magnetotail and solar ``nanoflares'' to cosmological gamma ray bursts, supernovae and the protracted intervals of nuclear activity that produce the giant quasars and radio galaxies. There are many parallels in the analyses of the explosion sites that are highlighted at this workshop, specifically stellar coronae, accretion disks, supernovae and compact objects. In this introductory talk, some general issues are discussed and some more specific questions relating to the individual sites are raised.Comment: To appear in Cosmic Explosions: Proc. 10th Maryland Conference on Astrophysics. Ed. S. Holt and W. Zhang AI

    Relativistic Accretion

    Get PDF
    A brief summary of the properties of astrophysical black holes is presented. Various modes of accretion are distinguished, corresponding to accretion at rates from well below to well above the Eddington rate. The importance of mass loss is emphasized when the accreting gas cannot radiate and it is asserted that a strong wind is likely to be necessary to carry off mass, angular momentum and energy from the accreting gas. The possible importance of the black hole spin in the formation of jets and in dictating the relative importance of non-thermal emission over thermal radiation is discussed.Comment: To appear in "Astrophysical Discs", ASP Conference Series, 13 pages, latex, 0 figure

    Gravitational arcs as a perturbation of the perfect ring

    Full text link
    The image of a point situated at the center of a circularly symmetric potential is a perfect circle. The perturbative effect of non-symmetrical potential terms is to displace and break the perfect circle. These 2 effects, displacement and breaking are directly related to the Taylor expansion of the perturbation at first order on the circle. The numerical accuracy of this perturbative approach is tested in the case of an elliptical potential with a core radius. The contour of the images and the caustics lines are well re-produced by the perturbative approach. These results suggests that the modeling of arcs, and in particular of tangential arcs may be simplified by using a general perturbative representation on the circle. An interesting feature of the perturbative approach, is that the equation of the caustic line depends only on the values on the circle of the lens displacement field along the θ\theta direction.Comment: 9 pages, 2 figure

    Current High Energy Emission from Black Holes

    Get PDF
    Two related topics are discussed. 1. Accretion onto black holes at low and high (though not very high) rates is believed to proceed adiabatically ({\em ie} non-radiatively). It is argued that the liberated energy is carried off by an outflow, probably involving almost all of the gas that is supplied. Two dimensional, fluid, accretion disks, in which mass, angular momentum and energy are transported to the disk surface, are summarized. It is conjectured that relatively minor changes are needed to describe magnetised disks. By contrast, the disk surface physics is argued to dictate the character of the outflow. 2. Ultrarelativistic jets appear to be produced by active galactic nuclei (AGN), pulsars and γ\gamma-ray bursts (GRB). In all three cases, it is argued that the power is generated electromagnetically by a magnetic rotator, (in a DC not AC form), and transported in this manner to the emission site. A model of a relativistically expanding electromagnetic shell is described and used to provide a simple model of a GRB in which the γ\gamma-rays are produced by unstable electrical currents flowing along the rotation axis. The shell drives a relativistic blast wave into the surrounding medium with a speed that varies with latitude and whose afterglow emission may exhibit achromatic breaks. Similar processes may be at work in non-relativistic plerions like the Crab Nebula and, possibly, AGN jets. The observational implications of these two classes of model and the prospects for performing instructive, numerical experiments to elucidate them further are briefly outlined.Comment: 18 pages, 1 figure. To appear in "Current High-Energy Emission around Black Holes" Proc. 2nd KIAS Astrophysics Workshop held in Seoul, Korea (Sep 3-7 2001) ed. C.-H. Lee Singapore:World Scientifi

    The Phenomena of High Energy Astrophysics

    Get PDF
    A brief summary of some highlights in the study of high energy astrophysical sources over the past decade is presented. It is argued that the great progress that has been made derives largely from the application of new technology to observation throughout all of the electromagnetic and other spectra and that, on this basis, the next decade should be even more exciting. However, it is imperative to observe cosmic sources throughout these spectra in order to obtain a full understanding of their properties. In addition, it is necessary to learn the universal laws that govern the macroscopic and the microscopic behavior of cosmic plasma over a great range of physical conditions by combining observations of different classes of source. These two injunctions are illustrated by discussions of cosmology, hot gas, supernova remnants and explosions, neutron stars, black holes and ultrarelativistic outflows. New interpreations of the acceleration of Galactic cosmic rays, the cooling of hot gas in rich clusters and the nature of ultrarelativistic outflows are outlined. The new frontiers of VHE γ\gamma-ray astronomy, low frequency radio astronomy, neutrino astronomy, UHE cosmic ray physics and gravitational wave astronomy are especially promising.Comment: To appear in "High Energy Processes and Phenomena in Astrophysics, IAU Symposium 214", X. Li, Z. Wang, V. Trimble (eds
    corecore