275 research outputs found
Overwinter Changes in Dry Aggregate Size Distribution Influencing Wind Erodibility in a Spring Wheat-Summerfallow Cropping System
A long-term study of the wind erodibility properties of a two-year spring wheat-summerfallow cropping systems was started in 1988 in south-central North Dakota as part of an USDA-ARS led effort to construct a process-oriented soil erosion predictive model. Observations were conducted on a conservation tillage experiment established in 1984 on soil classified in the U.S. as Typic-Pachic Haploborolls and in Canada as Brown to Dark Brown Chenozemic. The experiment included four residue-management treatments defined by targeted residue coverages: no-till, \u3e 60% cover; minimal-till, 30% to 60% cover and undercutter dominated; conventional-till, \u3c 30% cover and disk dominated; low-residue, \u3c 5 % cover. Fall and spring measurements of dry aggregate size distribution (ASD) of surface soil (0 to 4 cm depth), and overwinter changes in ASD are reported here. A rotary sieve produced six size fractions ranging from \u3c 0.42 mm to \u3e 19.2 mm diameter. Measurements of ASD are expressed as geometric mean diameter (GMD) or erodible fraction (EF: fraction \u3c 0.84 mm). Two major influences on overwinter changes in ASD were observed: (i) During the drier part of a multiyear weather cycle (1988 to 1990), disaggregative changes were observed, with a lowering of GMDs and an increase in EFs. Wetter years (1991 to 1993) brought mixed to aggregative ASD changes. (ii) The phase of the 21-month fallow period strongly affected overwinter ASD change, with large, aggregative changes (GMD up, EF down) observed over the first winter of the fallow period (stubble phase) and mixed aggregative to disaggregative changes observed in the second winter of fallow (residue phase). Tillage treatments had little apparent effect on overwinter ASD changes. Single and multiple regressions indicate that various factors would associate with significant fractions of variance in overwinter GMD change: (i) weather factors - (a) number of days with snowcover, (b) number of freeze-thaw cycles, and (c) precipitation in the fall; (ii) crop growth in years before the year of fallow; (iii) phase of the fallow period; and (iv) GMD level in the fall
Recommended from our members
Production of π0 and η mesons in Cu+Au collisions at sNN =200 GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in e+e- collisions in a range of collision energies sNN=3-1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu+Cu collisions either does not affect the jet fragmentation into light mesons or it affects the π0 and η the same way
Measurements of double-helicity asymmetries in inclusive production in longitudinally polarized collisions at GeV
We report the double helicity asymmetry, , in inclusive
production at forward rapidity as a function of transverse momentum
and rapidity . The data analyzed were taken during
GeV longitudinally polarized collisions at the Relativistic Heavy Ion
Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision
energy, particles are predominantly produced through gluon-gluon
scatterings, thus is sensitive to the gluon polarization
inside the proton. We measured by detecting the decay
daughter muon pairs within the PHENIX muon spectrometers in the
rapidity range . In this kinematic range, we measured the
to be ~(stat)~~(syst). The
can be expressed to be proportional to the product of the
gluon polarization distributions at two distinct ranges of Bjorken : one at
moderate range where recent RHIC data of jet and
double helicity spin asymmetries have shown evidence for significant gluon
polarization, and the other one covering the poorly known small- region . Thus our new results could be used to further
constrain the gluon polarization for .Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version
accepted for publication by Phys. Rev. D. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
Cross Section and Transverse Single-Spin Asymmetry of Mesons in Collisions at GeV at Forward Rapidity
We present a measurement of the cross section and transverse single-spin
asymmetry () for mesons at large pseudorapidity from
~GeV collisions. The measured cross section for
~GeV/ and is well described by a
next-to-leading-order perturbative-quantum-chromodynamics calculation. The
asymmetries have been measured as a function of Feynman- () from
, as well as transverse momentum () from
~GeV/. The asymmetry averaged over positive is
. The results are consistent with prior
transverse single-spin measurements of forward and mesons at
various energies in overlapping ranges. Comparison of different particle
species can help to determine the origin of the large observed asymmetries in
collisions.Comment: 484 authors, 13 pages, 11 figures, 4 tables, 2008 data. v2 is version
accepted by Phys. Rev. D. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be)publicly
available at http://www.phenix.bnl.gov/papers.htm
Single electron yields from semileptonic charm and bottom hadron decays in AuAu collisions at GeV
The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured
open heavy-flavor production in minimum bias AuAu collisions at
GeV via the yields of electrons from semileptonic decays
of charm and bottom hadrons. Previous heavy-flavor electron measurements
indicated substantial modification in the momentum distribution of the parent
heavy quarks due to the quark-gluon plasma created in these collisions. For the
first time, using the PHENIX silicon vertex detector to measure precision
displaced tracking, the relative contributions from charm and bottom hadrons to
these electrons as a function of transverse momentum are measured in AuAu
collisions. We compare the fraction of electrons from bottom hadrons to
previously published results extracted from electron-hadron correlations in
collisions at GeV and find the fractions to be
similar within the large uncertainties on both measurements for
GeV/. We use the bottom electron fractions in AuAu and along
with the previously measured heavy flavor electron to calculate the
for electrons from charm and bottom hadron decays separately. We find
that electrons from bottom hadron decays are less suppressed than those from
charm for the region GeV/.Comment: 432 authors, 33 pages, 23 figures, 2 tables, 2011 data. v2 is version
accepted for publication by Phys. Rev. C. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Transverse energy production and charged-particle multiplicity at midrapidity in various systems from to 200 GeV
Measurements of midrapidity charged particle multiplicity distributions,
, and midrapidity transverse-energy distributions,
, are presented for a variety of collision systems and energies.
Included are distributions for AuAu collisions at ,
130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, CuCu collisions at
and 62.4 GeV, CuAu collisions at
GeV, UU collisions at GeV,
Au collisions at GeV, HeAu collisions at
GeV, and collisions at
GeV. Centrality-dependent distributions at midrapidity are presented in terms
of the number of nucleon participants, , and the number of
constituent quark participants, . For all collisions
down to GeV, it is observed that the midrapidity data
are better described by scaling with than scaling with . Also presented are estimates of the Bjorken energy density,
, and the ratio of to ,
the latter of which is seen to be constant as a function of centrality for all
systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010,
2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.
- …