1,811 research outputs found

    Spectral Types of Field and Cluster O-Stars

    Full text link
    The recent catalog of spectral types of Galactic O-type stars by Mai'z-Apella'niz et al. has been used to study the differences between the frequencies of various subtypes of O-type stars in the field, in OB associations and among runaway stars. At a high level of statistical significance the data show that O-stars in clusters and associations have earlier types (and hence presumably larger masses and/or younger ages) than those that are situated in the general field. Furthermore it is found that the distribution of spectral subtypes among runaway O-stars is indistinguishable from that among field stars, and differs significantly from that of the O-type stars that are situated in clusters and associations. The difference is in the sense that runaway O-stars, on average, have later subtypes than do those that are still located in clusters and associations.Comment: To be published in the October 2004 issue of the Astronomical Journal Included Figure 1, page

    The ISM Interactions of a Runaway LBV Nebula in the LMC

    Full text link
    New observations of the Magellanic Cloud Luminous Blue Variable candidate S119 (HD269687) show the relationship of the star to its environs. Echelle spectroscopy and high-resolution HST imagery reveal an expanding bubble centered on the star. This bubble appears in both Halpha and [NII] and is noticeably brighter on the near (blue-shifted) side. The systemic velocity of both the expanding bubble and the star itself (as seen by the very broad Halpha emission feature in the stellar spectrum) is V_hel=160 km/s whereas the velocity of the superposed LMC ISM is 250-300 km/s. ISM absorption features seen in FUSE spectra reveal components at both stellar and LMC velocities. Thus we conclude that S119 is located within the LMC ISM and that the bubble is interacting strongly with the ISM in a bow shock.Comment: 5 pages in EmulateApJ format, 3 figures Accepted by ApJL See http://fuse.pha.jhu.edu/~danforth/s119

    The origin of runaway stars

    Full text link
    Milli-arcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and mu Columbae and of the eccentric binary iota Orionis intersect each other about 2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star zeta Ophiuchi intersects that of the nearby pulsar PSR J1932+1059, about 1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system which also contained zeta Oph, and deduce that the pulsar received a kick velocity of about 350 km/s in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.Comment: 5 pages, including 2 eps-figures and 1 table, submitted to the ApJ Letters. The manuscript was typeset using aaste

    Triggered Star Formation by Massive Stars

    Full text link
    We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the Lambda Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.Comment: 2007, ApJ, 657, 88

    Bayesian analysis of 210Pb dating

    Get PDF
    In many studies of environmental change of the past few centuries, 210Pb dating is used to obtain chronologies for sedimentary sequences. One of the most commonly used approaches to estimate the ages of depths in a sequence is to assume a constant rate of supply (CRS) or influx of `unsupported' 210Pb from the atmosphere, together with a constant or varying amount of `supported' 210Pb. Current 210Pb dating models do not use a proper statistical framework and thus provide poor estimates of errors. Here we develop a new model for 210Pb dating, where both ages and values of supported and unsupported 210Pb form part of the parameters. We apply our model to a case study from Canada as well as to some simulated examples. Our model can extend beyond the current CRS approach, deal with asymmetric errors and mix 210Pb with other types of dating, thus obtaining more robust, realistic and statistically better defined estimates.Comment: 22 Pages, 4 Figure

    A Hipparcos census of the nearby OB associations

    Get PDF
    A comprehensive census of the stellar content of the nearby OB associations is presented, based on Hipparcos positions, proper motions, and parallaxes. Moving groups are identified by combining de Bruijne's refurbished convergent point method with the `Spaghetti method' of Hoogerwerf & Aguilar. Monte Carlo simulations are used to estimate the expected number of interloper field stars. Astrometric members are listed for 12 young stellar groups, out to a distance of ~650 pc. These are the 3 subgroups Upper Scorpius, Upper Centaurus Lupus and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1, Cep OB2, and a new group designated as Cep OB6. The selection procedure corrects the list of previously known astrometric and photometric B- and A-type members, and identifies many new members, including a significant number of F stars, as well as evolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (Vel OB2) and EZ CMa (Col 121), and the classical Cepheid delta Cep in Cep OB6. In the nearest associations the later-type members include T Tauri objects and other pre-main sequence stars. Astrometric evidence for moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, Cam OB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive, due to their large distance or unfavorable kinematics. The mean distances of the well-established groups are systematically smaller than previous estimates. The mean motions display a systematic pattern, which is discussed in relation to the Gould Belt. Six of the 12 detected moving groups do not appear in the classical list of nearby OB associations. The number of unbound young stellar groups in the Solar neighbourhood may be significantly larger than thought previously.Comment: 51 pages, 30 PostScript figures, 6 tables in PostScript format, default LaTeX using psfig.sty; accepted for publication in the Astronomical Journal, scheduled for January 1999 issue. Abbreviated abstrac

    High-velocity runaway stars from three-body encounters

    Full text link
    We performed numerical simulations of dynamical encounters between hard massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster), in order to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (\geq 200-400 km/s) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of \geq 200 Msun) and found that about 3-4 per cent of all encounters produce velocities of \geq 400 km/s, while in about 2 per cent of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (\geq 200-400 km/s) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50-100 Msun stars. We found that from 1 to \simeq 4 per cent of these encounters can produce runaway stars with velocities of \geq 300-400 km/s (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1 per cent of encounters) produce hypervelocity (\geq 700 km/s) late B-type escapers.Comment: 4 pages, 2 figure, to appear in Star Clusters -- Basic Galactic Building Blocks throughout Time and Space, Proceed. of the IAU Symp. 266, eds. R. de Grijs and J. Lepin

    OB Associations

    Get PDF
    Since the previous (1990) edition of this meeting enormous progress in the field of OB associations has been made. Data from X-ray satellites have greatly advanced the study of the low-mass stellar content of associations, while astrometric data from the Hipparcos satellite allow for a characterization of the higher-mass content of associations with unprecedented accuracy. We review recent work on the OB associations located within 1.5 kpc from the Sun, discuss the Hipparcos results at length, and point out directions for future research.Comment: To appear in The Physics of Star Formation and Early Stellar Evolution II, eds C.J. Lada & N. Kylafis (Kluwer Academic), 30 pages, 9 EPS-figures, LaTeX using crckapb.sty, epsfig.sty, amssymb.st
    • 

    corecore