873 research outputs found
Parameter estimation supplement to the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)
This Parameter Estimation Supplement describes the PEST computer program and gives instructions for its use in determination of lunar gravitation field coefficients. PEST was developed for use in the RAE-B lunar orbiting mission as a means of lunar field recovery. The observations processed by PEST are short-arc osculating orbital elements. These observations are the end product of an orbit determination process obtained with another program. PEST's end product it a set of harmonic coefficients to be used in long-term prediction of the lunar orbit. PEST employs some novel techniques in its estimation process, notably a square batch estimator and linear variational equations in the orbital elements (both osculating and mean) for measurement sensitivities. The program's capabilities are described, and operating instructions and input/output examples are given. PEST utilizes MAESTRO routines for its trajectory propagation. PEST's program structure and subroutines which are not common to MAESTRO are described. Some of the theoretical background information for the estimation process, and a derivation of linear variational equations for the Method 7 elements are included
Advanced mission analysis programs
Computer programs provide preliminary trajectory and guidance information required for feasibility studies in space mission analysis. The advanced mission analysis computer programs include programs for approximate solutions, programs for targeting and output, and programs for Monte Carlo and linear guidance analysis
Programmer's manual for the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)
The Mission Analysis Evaluation and Space Trajectory Operations program known as MAESTRO is described. MAESTRO is an all FORTRAN, block style, computer program designed to perform various mission control tasks. This manual is a guide to MAESTRO, providing individuals the capability of modifying the program to suit their needs. Descriptions are presented of each of the subroutines descriptions consist of input/output description, theory, subroutine description, and a flow chart where applicable. The programmer's manual also contains a detailed description of the common blocks, a subroutine cross reference map, and a general description of the program structure
Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 3: Appendices A-G
Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Selected facets of the flight tests are also described in detail and include some of the following: (1) flight test plans and ground track plots; (2) navigation residual plots; (3) effects of approximations in navigation algorithms; (4) vibration spectrum of the CV-340 aircraft; and (5) modification of the statistical FDICR algorithm parameters for the flight environment
Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report
Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed
Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary
Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance
New mechanization equations for aided inertial navigation systems
Inertial navigation equations are developed which use area navigation (RNAV) waypoints and runway references as coodinate centers. The formulation is designed for aided inertial navigation systems and gives a high numerical accuracy through all phases of flight. A new formulation of the error equations for inertial navigation systems is also presented. This new formulation reduces numerical calculations in the use of Kalman filters for aided inertial navigation systems
Radio astronomy Explorer-B in-flight mission control system development effort
A description is given of the development for the Mission Analysis Evaluation and Space Trajectory Operations (MAESTRO) program to be used for the in-flight decision making process during the translunar and lunar orbit adjustment phases of the flight of the Radio Astronomy Explorer-B. THe program serves two functions: performance and evaluation of preflight mission analysis, and in-flight support for the midcourse and lunar insertion command decisions that must be made by the flight director. The topics discussed include: analysis of program and midcourse guidance capabilities; methods for on-line control; printed displays of the MAESTRO program; and in-flight operational logistics and testing
A study of redundancy management strategy for tetrad strap-down inertial systems
Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction
2-D Radiative Transfer in Protostellar Envelopes: I. Effects of Geometry on Class I Sources
We present 2-D radiation transfer models of Class I Protostars and show the
effect of including more realistic geometries on the resulting spectral energy
distributions and images. We begin with a rotationally flattened infalling
envelope as our comparison model, and add a flared disk and bipolar cavity. The
disk affects the spectral energy distribution most strongly at edge-on
inclinations, causing a broad dip at about 10 um (independent of the silicate
feature) due to high extinction and low scattering albedo in this wavelength
region. The bipolar cavities allow more direct stellar+disk radiation to emerge
into polar directions, and more scattering radiation to emerge into all
directions. The wavelength-integrated flux, often interpreted as luminosity,
varies with viewing angle, with pole-on viewing angles seeing 2-4 times as much
flux as edge-on, depending on geometry. Thus, observational estimates of
luminosity should take into account the inclination of a source. The envelopes
with cavities are significantly bluer in near-IR and mid-IR color-color plots
than those without cavities. Using 1-D models to interpret Class I sources with
bipolar cavities would lead to an underestimate of envelope mass and an
overestimate of the implied evolutionary state. We compute images at near-,
mid-, and far-IR wavelengths. We find that the mid-IR colors and images are
sensitive to scattering albedo, and that the flared disk shadows the midplane
on large size scales at all wavelengths plotted. Finally, our models produce
polarization spectra which can be used to diagnose dust properties, such as
albedo variations due to grain growth. Our results of polarization across the
3.1 um ice feature agree well with observations for ice mantles covering 5% of
the radius of the grains.Comment: Accepted for publication in ApJ, 37 pages, 13 figures (several
figures reduced in quality; find original version at
http://gemelli.colorado.edu/~bwhitney/preprints.html
- …