14 research outputs found
A need assessment for designing sustainable solar drying technology in Nepal and Bhutan
publishedVersio
Carbon footprint of Nepalese healthcare system: A study of Dhulikhel Hospital [version 1; peer review: 2 approved, 1 approved with reservations, 1 not approved]
Background: Though direct greenhouse gas emissions cannot be observed in health care sectors, there can exist indirect emissions contributing to global climate change. This study addresses the concept of the carbon footprint and its significance in understanding the environmental impact of human activities, with a specific emphasis on the healthcare sector through gate-to-gate (GtoG) life cycle assessment. Transportation, energy consumption, and solid waste generated by hospitals are the primary sources of carbon emissions. Methods: Different standards, guidelines and parameters were used to estimate emissions from both the primary and secondary data. All steps and sub-steps involved in GtoG were accessed and analyzed within the standard ISO 14040:44 guideline. An extensive review of existing literature was carried out for the evaluation and verification of secondary data. Results: The total carbon footprint of generators, electricity consumption, transportation activities, LPG cylinders, PV systems was found to be 58,780 kg-CO2-eq/yr, 519,794 kg-CO2-eq/yr, 272,375 kg-CO2-eq/yr, 44,494 kg-CO2-eq/yr, 35,283 kg-CO2-eq/yr respectively and the emissions from non-biodegradable solid waste was found to be 489,835 kg-CO2/yr. Local air pollutants such as PM10, CO, SO2, NOX, and VOCs generated by generators and transportation were also estimated. The CH4 emissions from liquid waste were 1177.344 kg CH4/BOD yr, and those from biodegradables were 3821.6954 kg CH4/yr. Conclusions: Healthcare professionals and policymakers can take action to reduce the sector's carbon footprint by implementing best practices and encouraging sustainable behavior. This study can be taken as foundation for further exploration of indirect emissions from healthcare sectors not only in Nepal but also in south Asian scenario
Airtightness of Nepalese Residential Buildings
Experimental field measurements regarding airtightness following the fan pressurisation method were done on 25 typical residential buildings at different locations in Nepal. The field measurement data were classified according to building type and building age.The mean air permeability (Q50 ) for the studied buildings was 6.9 l/s·m2 and the mean air change rate was 55.5 air changes per hour at 50 Pa. The maximum air leakage rate (Q50 ) was 28.4 l/s·m2 for brick masonry in mud mortar type and the minimum recorded was 1.7 l/s·m2 for brick masonry in cement mortar type building. Brick masonry in mud mortar-type buildings was found to be leakier regardless of the building age, and brick masonry in cement mortar-type buildings was comparatively more airtight. Leakage locations identified through visual inspection included the spacing between the door frame and operable door area, horizontal window slider, joint areas of window frame and wall, wood plank-based wall structure, roof joint areas and holes in the wall. This research is the first of its kind in Nepal to assess the airtightness of buildings, and the outcome of this research is one of the key parameters to evaluate the thermal performance of Nepalese buildings scientifically
Effect of graphene nanoplatelets induced ethylene glycol/water mixture (50:50) fluid on lithium-battery cooling
Battery technology is the main driving force behind the shift towards emission-free transportation. However, a major obstacle to the widespread adoption of this technology is the need to maintain the battery's temperature at a standard of 27 °C. Traditionally, a mixture of ethylene glycol and water is circulated through the battery pack for cooling, but this method is not sufficient. By contrast, the use of graphene nanoplatelets (GNPs) can improve heat transfer, reducing temperature rise in the battery cell. In this study, a customized battery pack has been simulated using coolants containing varying concentrations of GNPs (ranging from 0.001 vol% to 0.01 vol%) to assess their effectiveness in lowering the operating temperature. The Lagrangian approach has been employed to track the discrete phase particles which couples with Eulerian continuous phase fluid. Results have shown that the pure EG/Water coolant decreases the peak temperature of the system by 16.67% (60 °C–50 °C) which further decreases to 26.85 °C (reduction of 55.25%) till the addition of optimum 0.03 vol% GNP. With the addition of only 0.001 vol% of GNPs, the difference in the peak temperature in the model increases from 10 °C to 31.15 °C as compared to the pure mixture. Higher thermal conductivity, greater surface area and higher specific heat capacity of the particles are attributed for this enhanced cooling
Seasonal influence on urban dust PAH profile and toxicity in Sydney, Australia
Road dust is one of the major threats to the urban environment due to wash-off of dust to the surrounding catchments during wet weather period. The dust contains wide range of toxic contaminants such as heavy metals, polycyclic aromatic hydrocarbons (PAHs) and endocrine disrupting chemicals. Among the toxic contaminants, PAHs are of environmental concern due to their potential carcinogenic and mutagenic effect besides endocrine disruptive behaviour. Eighteen road dust samples from Sydney were collected in different time periods for a year and analysed for 16 US EPA PAHs. Total PAHs content range in the dust was 9-105 μg/g. Total and individual PAH contents were highest in the finest size fraction
Carbon footprint of Nepalese healthcare system: A study of Dhulikhel Hospital [version 2; peer review: 2 approved, 1 approved with reservations, 1 not approved]
Background Though direct greenhouse gas emissions cannot be observed in health care sectors, there can exist indirect emissions contributing to global climate change. This study addresses the concept of the carbon footprint and its significance in understanding the environmental impact of human activities, with a specific emphasis on the healthcare sector through gate-to-gate (GtoG) life cycle assessment. Transportation, energy consumption, and solid waste generated by hospitals are the primary sources of carbon emissions. Methods Different standards, guidelines and parameters were used to estimate emissions from both the primary and secondary data. All steps and sub-steps involved in GtoG were accessed and analyzed within the standard ISO 14040:44 guideline. An extensive review of existing literature was carried out for the evaluation and verification of secondary data. Results The total carbon footprint of generators, electricity consumption, transportation activities, LPG cylinders, PV systems was found to be 58,780 kg-CO2-eq/yr, 519,794 kg-CO2-eq/yr, 272,375 kg-CO2-eq/yr, 44,494 kg-CO2-eq/yr, 35,283 kg-CO2-eq/yr respectively and the emissions from non-biodegradable solid waste was found to be 489,835 kg-CO2/yr. Local air pollutants such as PM10, CO, SO2, NOX, and VOCs generated by generators and transportation were also estimated. The CH4 emissions from liquid waste were 1177.344 kg CH4/BOD yr, and those from biodegradables were 3821.6954 kg CH4/yr. Conclusions Healthcare professionals and policymakers can take action to reduce the sector's carbon footprint by implementing best practices and encouraging sustainable behavior. This study can be taken as foundation for further exploration of indirect emissions from healthcare sectors not only in Nepal but also in south Asian scenario
Life cycle energy use and carbon emission of a modern single-family residential building in Nepal
The rapid urbanization and rural-urban migration trends have led to an increase in building construction activities, shifting from traditional practices to modern concrete structures. However, this transition has imposed significant environmental pressures, including heightened resource and energy demands, resulting in increased emissions. To gauge the environmental impact of construction, a thorough examination of each phase is crucial. This study used the Life Cycle Assessment (LCA) tool, based on ISO 14040:2006, ISO 14044:2006, and EN 15978:2011, to evaluate the carbon dioxide equivalent (CO2-eq) emissions throughout the complete life cycle of a modern single-family residential building. The findings reveal a total energy use of 6411.33Â MJ per square meter and emissions of 718.35Â kg CO2-eq per square meter over the building's lifespan of 50Â years. Notably, the production of building materials and the construction phase contribute to the highest percentage (60.29%) of the total life cycle emissions owing to 49.51% of energy use. In contrast, emissions during the operational phase are relatively lower, attributed to increased electricity usage for cooking and minimal energy consumption for heating and cooling. Additionally, the study suggests that achieving complete electricity sufficiency within the country could reduce building emissions by 39.30%, as fossil fuel-based imports from India would be replaced with cleaner hydroelectricity
Dynamics of PM2.5 concentrations in Kathmandu Valley, Nepal
This study analyzed daily patterns and dynamics of PM2.5 concentrations in the Kathmandu Valley during three winters. The PM2.5 data showed a daily repetitive cycle which represents influence of local air flow and dispersion and accumulation of air pollutants in the valley. Two concentration peaks were observed in the morning and in the evening periods, and they fell down during the daytime and the nighttime periods. This indicates local emission sources as major contributors in the valley. The more pronounced morning peak compared to the evening peak showed that the upslope wind in the morning helped to move the polluted inversion layer downward, subsequently adding to freshly emitted pollutants and causing a sharp pollutant concentration rise in the morning. Katabatic wind and rise of temperature in the basin during the day helped the pollutant upflow and dilution, resulting in a sharp PM2.5 concentration decline. Through the afternoon, the decrease in air temperature followed by decrease in wind speed caused to lower PM2.5 peaks in the evening. Also, higher morning peaks of PM2.5 concentrations compared to the evening indicated pollution from the previous day is added to the fresh emission. The valley had increased PM2.5 from the beginning of October which continued till the first week of February. The increase in PM2.5 peak fit the logistic equation y = [k/(1 + exp (p - qx)] + a sin(bx) where k, p, q, a, and b are constants. © 2009