19,450 research outputs found

    The Arbitrary Trajectory Quantization Method

    Full text link
    The arbitrary trajectory quantization method (ATQM) is a time dependent approach to quasiclassical quantization based on the approximate dual relationship that exists between the quantum energy spectra and classical periodic orbits. It has recently been shown however, that, for polygonal billiards, the periodicity criterion must be relaxed to include closed almost-periodic (CAP) orbit families in this relationship. In light of this result, we reinvestigate the ATQM and show that at finite energies, a smoothened quasiclassical kernel corresponds to the modified formula that includes CAP families while the delta function kernel corresponding to the periodic orbit formula is recovered at high energies. Several clarifications are also provided.Comment: revtex, ps figure

    The CWKB Method of Particle Production in Periodic Potential

    Full text link
    In this work we study the particle production in time dependent periodic potential using the method of complex time WKB (CWKB) approximation. In the inflationary cosmology at the end of inflationary stage, the potential becomes time dependent as well as periodic. Reheating occurs due to particle production by the oscillating inflaton field. Using CWKB we obtain almost identical results on catastrophic particle production as obtained by others.Comment: 17 pages, latex, 2 figure

    Semiclassical Inequivalence of Polygonalized Billiards

    Full text link
    Polygonalization of any smooth billiard boundary can be carried out in several ways. We show here that the semiclassical description depends on the polygonalization process and the results can be inequivalent. We also establish that generalized tangent-polygons are closest to the corresponding smooth billiard and for de Broglie wavelengths larger than the average length of the edges, the two are semiclassically equivalent.Comment: revtex, 4 ps figure

    Schroedinger Wheeler-DeWitt Equation In Multidimensional Cosmology

    Full text link
    We study multidimensional cosmology to obtain the wavefunction of the universe using wormhole dominance proposal. Using a prescription for time we obtain the Schroedinger-Wheeler-DeWitt equation without any reference to WD equation and WKB ansatz for WD wavefunction. It is found that the Hartle-Hawking or wormhole-dominated boundary conditions serve as a seed for inflation as well as for Gaussian type ansatz to Schroedinger-Wheeler-DeWitt equation.Comment: 10 Pages, LaTeX, no figur

    Periodic Orbits in Polygonal Billiards

    Full text link
    We review some properties of periodic orbit families in polygonal billiards and discuss in particular a sum rule that they obey. In addition, we provide algorithms to determine periodic orbit families and present numerical results that shed new light on the proliferation law and its variation with the genus of the invariant surface. Finally, we deal with correlations in the length spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure

    Can Inflation solve the Hierarchy Problem?

    Full text link
    Inflation with tunneling from a false to a true vacuum becomes viable in the presence of a scalar field that slows down the initial de Sitter phase. As a by-product this field also sets dynamically the value of the Newton constant observed today. This can be very large if the tunneling rate (which is exponentially sensitive to the barrier) is small enough. Therefore along with Inflation we also provide a natural dynamical explanation for why gravity is so weak today. Moreover we predict a spectrum of gravity waves peaked at around 0.1 mHz, that will be detectable by the planned space inteferometer LISA. Finally we discuss interesting predictions on cosmological scalar and tensor fluctuations in the light the WMAP 3-year data.Comment: 7 pages. Replaced version with comparison with WMAP 3-year dat
    • …
    corecore