18,621 research outputs found
Exact solution of Riemann--Hilbert problem for a correlation function of the XY spin chain
A correlation function of the XY spin chain is studied at zero temperature.
This is called the Emptiness Formation Probability (EFP) and is expressed by
the Fredholm determinant in the thermodynamic limit. We formulate the
associated Riemann--Hilbert problem and solve it exactly. The EFP is shown to
decay in Gaussian.Comment: 7 pages, to be published in J. Phys. Soc. Jp
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
We present a minimal model for cuprate superconductors. At the unrestricted
mean-field level, the model produces homogeneous superconductivity at large
doping, striped superconductivity in the underdoped regime and various
antiferromagnetic phases at low doping and for high temperatures. On the
underdoped side, the superconductor is intrinsically inhomogeneous and global
phase coherence is achieved through Josephson-like coupling of the
superconducting stripes. The model is applied to calculate experimentally
measurable ARPES spectra.Comment: 5 pages, 4 eps included figure
Models of granular ratchets
We study a general model of granular Brownian ratchet consisting of an
asymmetric object moving on a line and surrounded by a two-dimensional granular
gas, which in turn is coupled to an external random driving force. We discuss
the two resulting Boltzmann equations describing the gas and the object in the
dilute limit and obtain a closed system for the first few moments of the system
velocity distributions. Predictions for the net ratchet drift, the variance of
its velocity fluctuations and the transition rates in the Markovian limit, are
compared to numerical simulations and a fair agreement is observed.Comment: 15 pages, 4 figures, to be published on Journal of Statistical
Mechanics: Theory and Experiment
Direct simulation for a homogenous gas
A probabilistic analysis of the direct simulation of a homogeneous gas is
given. A hierarchy of equations similar to the BBGKY hierarchy for the reduced
probability densities is derived. By invoking the molecular chaos assumption,
an equation similar to the Boltzmann equation for the single particle
probability density and the corresponding H-theorem is derived
Mechanism of margination in confined flows of blood and other multicomponent suspensions
Flowing blood displays a phenomenon called margination, in which leukocytes
and platelets are preferentially found near blood vessel walls, while
erythrocytes are depleted from these regions. Here margination is investigated
using direct hydrodynamic simulations of a binary suspension of stiff (s) and
floppy (f) capsules, as well as a stochastic model that incorporates the key
particle transport mechanisms in suspensions -- wall-induced hydrodynamic
migration and shear-induced pair collisions. The stochastic model allows the
relative importance of these two mechanisms to be directly evaluated and
thereby indicates that margination, at least in the dilute case, is largely due
to the differential dynamics of homogeneous (e.g. s-s) and heterogeneous (s-f)
collisionsComment: 5 Pages, 4 figure
Semiflexible polymers under external fields confined to two dimensions
The non-equilibrium structural and dynamical properties of semiflexible
polymers confined to two dimensions are investigated by molecular dynamics
simulations. Three different scenarios are considered: The force-extension
relation of tethered polymers, the relaxation of an initially stretched
semiflexible polymer, and semiflexible polymers under shear flow. We find
quantitative agreement with theoretical predictions for the force-extension
relation and the time dependence of the entropically contracting polymer. The
semiflexible polymers under shear flow exhibit significant conformational
changes at large shear rates, where less stiff polymers are extended by the
flow, whereas rather stiff polymers are contracted. In addition, the polymers
are aligned by the flow, thereby the two-dimensional semiflexible polymers
behave similarly to flexible polymers in three dimensions. The tumbling times
display a power-law dependence at high shear rate rates with an exponent
comparable to the one of flexible polymers in three-dimensional systems.Comment: Accepted for publication in J. Chem. Phy
Association of drusen deposition with choroidal intercapillary pillars in the aging human eye
PURPOSE. To determine the pattern of drusen accumulation with age and to investigate the initial sites of deposition and their relationship to choroidal capillaries in human donor eyes from the eye bank of Moorfields Eye Hospital.METHODS. Wholemounted, hydrated preparations of the choriocapillaris and Bruch's membrane from donor eyes ranging from 42 to 95 years, with or without retinal pigment epithelium (RPE), were examined by conventional and confocal microscopy. Drusen were visualized by their autofluorescence.RESULTS. In all age groups studied autofluorescent drusen were present at the equator but were not found centrally where the vascular architecture is different, being tubular rather than a honeycomb pattern. Autofluorescing drusen were strongly associated with the lateral walls of the choriocapillaris (an area commonly known as the intercapillary pillars of the choriocapillaris (P = 0.028; Wilcoxon signed ranks test). Nonfluorescing drusen were occasionally seen centrally, but were not easily identified, and because of their large size, their localization with respect to capillary walls was not possible.CONCLUSIONS. These results strongly support the notion that autofluorescent drusen are not randomly distributed and have a specific spatial relationship to choroidal vessel walls. That equatorial drusen fluoresce, whereas central drusen do not, suggests that they may have different chemical compositions at the two sites and possibly different significance in age-related macular disease
Unified Gas-kinetic Wave-Particle Methods II: Multiscale Simulation on Unstructured Mesh
In this paper, we present a unified gas-kinetic wave-particle (UGKWP) method
on unstructured mesh for multiscale simulation of continuum and rarefied flow.
Inheriting from the multicale transport in the unified gas-kinetic scheme
(UGKS), the integral solution of kinetic model equation is employed in the
construction of UGKWP method to model the flow physics in the cell size and
time step scales. A novel wave-particle adaptive formulation is introduced in
the UGKWP method to describe the flow dynamics in each control volume. The
local gas evolution is constructed through the dynamical interaction of the
deterministic hydrodynamic wave and the stochastic kinetic particle. Within the
resolution of cell size and time step, the decomposition, interaction, and
evolution of the hydrodynamic wave and the kinetic particle depend on the ratio
of the time step to the local particle collision time. In the rarefied flow
regime, the flow physics is mainly recovered by the discrete particles and the
UGKWP method performs as a stochastic particle method. In the continuum flow
regime, the flow behavior is solely followed by macroscopic variable evolution
and the UGKWP method becomes a gas-kinetic hydrodynamic flow solver for the
viscous and heat-conducting Navier--Stokes solutions. In different flow
regimes, many numerical test cases are computed to validate the UGKWP method on
unstructured mesh. The UGKWP method can get the same UGKS solutions in all
Knudsen regimes without the requirement of the time step and mesh size being
less than than the particle collision time and mean free path. With an
automatic wave-particle decomposition, the UGKWP method becomes very efficient.
For example, at Mach number 30 and Knudsen number 0.1, in comparison with UGKS
several-order-of-magnitude reductions in computational cost and memory
requirement have been achieved by UGKWP
Enhancing the Pierre Auger Observatory to the 10^{17} to 10^{18.5} eV Range: Capabilities of an Infill Surface Array
The Pierre Auger Observatory has been designed to study the highest-energy
cosmic rays in nature (E > 10^{18.5} eV). The determination of their arrival
direction, energy and composition is performed by the analysis of the
atmospheric showers they produce. The Auger Surface Array will consist of 1600
water Cerenkov detectors placed in an equilateral triangular grid of 1.5 km
spacing. The aim of this paper is to show that the addition of a "small" area
of surface detectors at half or less the above mentioned spacing would allow a
dramatic increase of the physical scope of this Observatory, reaching lower
energies at which the transition from galactic to extragalactic sources is
expected.Comment: 21 pages, 5 figures, accepted for publication in Nucl. Instr. & Meth.
in Phys. Res.
Partitioning of energy in highly polydisperse granular gases
A highly polydisperse granular gas is modeled by a continuous distribution of
particle sizes, a, giving rise to a corresponding continuous temperature
profile, T(a), which we compute approximately, generalizing previous results
for binary or multicomponent mixtures. If the system is driven, it evolves
towards a stationary temperature profile, which is discussed for several
driving mechanisms in dependence on the variance of the size distribution. For
a uniform distribution of sizes, the stationary temperature profile is
nonuniform with either hot small particles (constant force driving) or hot
large particles (constant velocity or constant energy driving). Polydispersity
always gives rise to non-Gaussian velocity distributions. Depending on the
driving mechanism the tails can be either overpopulated or underpopulated as
compared to the molecular gas. The deviations are mainly due to small
particles. In the case of free cooling the decay rate depends continuously on
particle size, while all partial temperatures decay according to Haff's law.
The analytical results are supported by event driven simulations for a large,
but discrete number of species.Comment: 10 pages; 5 figure
- …
