64 research outputs found

    Hydrodynamics and mass transfer in bubble column: Influence of liquid phase surface tension

    Get PDF
    According to literature, few experiments are performed in organic solvents which are mostly used in commercial gas–liquid reactors. However, it is commonly accepted that data obtained in aqueous solution allow to predict the surface tension effects, and to model the behaviour of organic solvents. In this work, we examine the validity of this approximation. In this objective, the flows observed in two pure media having similar viscosity but different surface tension—respectively, water (reference) and cyclohexane (solvent)—are successively compared at two scales: in a bubble column and in bubble plumes. In bubble plumes, as expected, the mean bubble size is smaller in the medium having the smallest surface tension (cyclohexane), but for this medium the destabilisation of flow is observed to occur at smaller gas velocity, due to break-up and coalescence phenomena. In bubble column, these phenomena induce the bubbling transition regime at lower gas velocity, whatever the operating conditions for liquid phase: batch or continuous. Consequently, when the two media are used at similar gas superficial velocity, but in different hydrodynamic regimes, greater gas hold-up and smaller bubble diameter can be observed in water; the interfacial area is then not always higher in cyclohexane. This result differs from the behaviour observed in the literature for aqueous solutions. The analysis of bubble plumes in aqueous solutions of butanol shows that this difference is due to a fundamental difference in coalescent behaviour between pure solvents and aqueous mixtures: the surface tension effect is less important in pure liquid than in aqueous solutions, because of the specific behaviour of surfactants. It is then still difficult to predict a priori the bubbling regime or the flow characteristics for a given medium, and all the more to choose an appropriate liquid as a model for industrial solvents

    Pilot-Scale Laboratory Instruction for ChE: the specific case of the Pilot-unit leading group

    Get PDF
    This paper presents an original approach for Chemical Engineering laboratory teaching that is currently applied at INP-ENSIACET (France). This approach, referred to as "pilot-unit leading group" is based on a partial management of the laboratories by the students themselves who become temporarily in charge of one specific laboratory. In addition to meeting the classical pedagogic requirements of the laboratories, this teaching method allows the students to actively experience technical project management

    Axial and Radial Investigation of Hydrodynamics in a Bubble Column;Influence of Fluids Flow Rates and Sparger Type

    Get PDF
    A detailed investigation of local hydrodynamics in a pilot plant bubble column has been performed using various techniques, exploring both axial and radial variations of the gas hold-up, bubble average diameter and frequency, surface area. A wide range of operating conditions has been explored up to large gas and liquid flow rates, with two sparger types. Two main complementary techniques were used: a quasi local measurement of gas hold-up via series of differential pressure sensors to get the axial variation and a double optic probe giving radial variations of gad hold-up, bubble average size and frequency and surface area. According to axial evolutions, three zones, where radial evolutions have been detailed,have been separated: at the bottom the gas injection zone, the large central region or column bulk and the disengagement zone at the column top. It was found that significant axial and radial variations of the two phase flow characteristics do exist even in the so called homogeneous regime. The normalized profiles of bubble frequency appear sparger and gas velocity independent contrary to bubble diameter, gas hold-up and interfacial area normalized profiles. In any case bubbles are larger in the sparger zone than elsewhere. The main result of this work is the very strong effect of liquid flow on bubble column hydrodynamics at low gas flow rate. First the flow regime map observed in batch mode is dramatically modified with a drastic reduction of the homogeneous regime region, up to a complete heterogeneous regime in the working conditions (uG> 0.02 m/s). On the contrary, liquid flow has limited effects at very high gas flow rates. A large data bank is provided to be used for example in detailed comparison with CFD calculations

    Dynamique d'un nuage de bulles homogène confiné

    Get PDF
    De nombreuses applications industrielles mettent en jeu des écoulements à bulles dans des échangeurs de masse et de chaleur ou des réacteurs. Les mouvements des bulles génèrent de l'agitation dans le liquide qui, en retour, influence la distribution spatiale des bulles et leur vitesse. La compréhension générique de ce problème de couplage inverse total est fondamentale mais délicate. Des travaux expérimentaux dédiés dans des configurations d'écoulements bien définies sont donc nécessaires pour atteindre cet objectif. Ce travail explore la dynamique d'un nuage de bulles en ascension à grand nombre de Reynolds dans une cellule de Hele-Shaw ([1]). Cette configuration apporte une contribution à une compréhension générale car elle permet d'étudier l'agitation générée par des bulles à grand nombre de Reynolds possédant des sillages instables tout en empêchant, par les effets de confinement, la production de turbulence. La comparaison avec la dynamique de nuages de bulles non confinés ([2]) est également éclairante. Par ailleurs, la détection des interfaces est considérablement facilitée par le confinement: une description complète et précise de la répartition spatiale et de la dynamique des bulles peut être ici obtenue directement par ombroscopie avec une seule caméra. De même, la mesure par PIV du champ de vitesse du liquide intégré dans l'épaisseur de la cellule permet de caractériser de manière pertinente la dynamique du liquide ([3]) (Fig.1-a). La dynamique des deux phases a ainsi été explorée pour des fractions volumiques de gaz α comprises entre 1% et 14% dans un régime où l'inertie est importante (Re≈500). Les bulles étudiées possèdent un sillage instable avec des lâchers tourbillonnaires réguliers et suivent une trajectoire ascendante oscillante tout en gardant une forme elliptique constante. Le frottement aux parois impose néanmoins une décroissance très forte des sillages ([4]). Les résultats montrent que l'on peut expliquer les statistiques associées au mouvement des bulles dans le nuage à partir de deux mécanismes élémentaires: (i) les oscillations induites par le sillage associées aux lâchers tourbillonnaires et (ii) la forte perturbation de vitesse localisée à l'arrière des bulles. Le mécanisme dominant dans la direction verticale est l'entrainement dans le sillage alors que celui qui régit la dynamique des bulles dans la direction horizontale est associé aux oscillations générées par les sillages dont l'intensité est indépendante de α (Fig.1-b). L'auto-dispersion des bulles a également été étudiée. Elle peut être caractérisée par des coefficients de dispersion qui évoluent linéairement avec α. En ce qui concerne l'agitation dans le liquide, comme en écoulement non confiné, les deux composantes des fluctuations de vitesse évoluent proportionnellement à αn avec ici αn=0.38 et 0.46 dans les directions horizontales et verticales respectivement. Le spectre spatial des fluctuations de vitesse évolue, sur une gamme de nombres d'ondes k bien définie, proportionnellement à k-³. Dans cette configuration où la turbulence ne peut se développer, cette évolution s'explique très clairement par la superposition linéaire de perturbations de vitesses aléatoires ([5]), il s'agit donc d'un effet statistique associé aux passages de perturbations convectées par les bulles

    Attenuation of the wake of a sphere in an intense incident turbulence with large length scales

    Get PDF
    We report an investigation of the wake of a sphere immersed in a uniform turbulent flow for sphere Reynolds numbers ranging from 100 to 1000. An original experimental setup has been designed to generate a uniform flow convecting an isotropic turbulence. At variance with previous works, the integral length scale of the turbulence is of the same order as the sphere diameter and the turbulence intensity is large. In consequence, the most intense turbulent eddies are capable of influencing the flow in the close vicinity of the sphere. Except in the attached region downstream of the sphere where the perturbation of the mean velocity is larger than the standard deviation of the incident turbulence, the flow is controlled by the incident turbulence. The distortion of the turbulence while the flow goes round the sphere leads to an increase in the longitudinal fluctuation and a decrease in the transversal one. The attenuation of the transversal fluctuations is still significant at 30 radii downstream of the sphere whereas the longitudinal fluctuations relax more rapidly toward the incident value. The more striking result however concerns the evolution of the mean velocity defect with the distance x from the sphere. It decays as x−2 and scales with the standard deviation of the incident turbulence instead of scaling with the mean incident velocity

    Dynamics of a high-Reynolds-number bubble rising within a thin gap

    Get PDF
    We report an experimental analysis of path and shape oscillations of an air bubble of diameter d rising in water at high Reynolds number in a vertical Hele-Shaw cell of width h. Liquid velocity perturbations induced by the relative movement have also been investigated to analyze the coupling between the bubble motion and the wake dynamics. The confinement ratio h/d is lower than unity so that the bubble is flattened in between the walls of the cell. As the bubble diameter is increased, the Archimedes and the Bond numbers increase within 10 6 Ar 6 104 and 6 × 10−3 6 Bo 6 140. Mean shapes become more and more elongated. They first evolve from in-plane circles to ellipses, then to complicated shapes without fore-aft symmetry and finally to semi-circular capped bubbles. The scaling law Re = 0.5Ar is however valid for a large range of Ar, indicating that the liquid films between the bubble and the walls do no contribute significantly to the drag force exerted on the bubble. The coupling between wake dynamics, bubble path and shape oscillations evolves and a succession of contrasted regimes of oscillations is observed. The rectilinear bubble motion becomes unstable from a critical value Ar1 through an Hopf bifurcation while the bubble shape is still circular. The amplitude of path oscillations first grows as Ar increases above Ar1 but then surprisingly decreases beyond a second Archimedes number Ar2. This phenomenon, observed for steady ellipsoidal shape with moderate eccentricity, can be explained by the rapid attenuation of bubble wakes caused by the confinement. Shape oscillations around a significantly elongated mean shape starts for Ar > Ar3. The wake structure progressively evolves due to changes in the bubble shape. After the break-up of the fore-aft symmetry, a fourth regime involving complicated shape oscillations is then observed for Ar > Ar4. Vortex shedding disappears and unsteady attached vortices coupled to shape oscillations trigger path oscillations of moderate amplitude. Path and shape oscillations finally decrease when Ar is further increased. For Ar > Ar5, capped bubbles followed by a steady wake rise on a straight path

    PIV with volume lighting in a narrow cell: An efficient method to measure large velocity fields of rapidly varying flows

    Get PDF
    In this work we test a methodology for PIV measurements when alargefield of view is required in planar confined geometries. Using a depth of fieldlarger than the channel width, we intend to measure the in-plane variations of the velocity of the fluid averaged through the width of the channel, and we examine in which operating conditions this becomes possible. Measurements of the flow through anarrow channel by PIV are challenging because of the strong velocity gradients that develop between the walls. In particular, all techniques that use small particles as tracers have to deal with the possible migration of the tracers in the direction perpendicular to the walls. Among the complex mechanisms for migration, we focus on the so called Segré–Silberberg effect which can lead to transverse migration of neutrally buoyant tracers of finite size. We report experimental PIV measurements in a Hele-Shaw cell of 1 mm gap, which have been carried out by using neutrally buoyant tracers of size around 10 μm. By considering steady flows, we have observed, in particular flow regimes, the effect of an accumulation of the tracers at a certain distance to the wall due to the so called Segré–Silberberg effect. The particle migration is expected to occur at any Reynolds numbers but the migration velocity depends on the Reynolds number. A significant migration therefore takes place each time the observation duration is large enough compared to the migration time. For a given observation duration, the tracers remain uniformly distributed at low Reynolds numbers whereas they all accumulate at the equilibrium position at large ones. When using volumelighting, the PIV algorithm provides the average velocity of the flow through the gap at low Reynolds number, while it leads to the velocity of the flow at the equilibrium position of the tracers at large Reynolds numbers. By considering unsteady flows, we have observed that the migration does not occur if the timescale of flow variation is short compared to the time required for the parabolic flow to develop across the gap. In this case, there is no transverse velocity gradient and the PIV algorithm provides the fluid velocity. Altogether, these results allow us to propose guidelines for the interpretation of PIV measurements in confined flow, which are based on the theoretical predictions of the tracer migration derived by Asmolov [1]

    Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 1: Bubble dynamics

    Get PDF
    The spatial distribution, the velocity statistics and the dispersion of the gas phase have been investigated experimentally in a homogeneous swarm of bubbles confined within a thin gap. In the considered flow regime, the bubbles rise on oscillatory paths while keeping a constant shape. They are followed by unstable wakes which are strongly attenuated due to wall friction. According to the direction that is considered, the physical mechanisms are totally different. In the vertical direction, the entrainment by the wake controls the bubble agitation, causing the velocity variance and the dispersion coefficient to increase almost linearly with the gas volume fraction. In the horizontal direction, path oscillations are the major cause of bubble agitation, leading to a constant velocity variance. The horizontal dispersion, which is lower than that in the vertical direction, is again observed to increase almost linearly with the gas volume fraction. It is however not directly due to regular path oscillations, which are unable to generate a neat deviation over a whole period, but results from bubble interactions which cause a loss of the bubble velocity time correlation

    Application of the double optic probe technique to distorted tumbling bubbles in aqueous or organic liquid

    Get PDF
    The optic probe technique is widely used to investigate bubble reactors. To derive values of bubble local velocities and bubble local sizes, a specific signal treatment is usually applied under severe assumptions for bubble path and shape. However, in most industrial reactors, bubble motion is chaotic and no common shape can be assumed. In this work, the reliability of the signal treatment associated with the optic probe technique is examined for distorted and tumbling bubbles. A double-tip optic probe is settled in a glass tank and the rise of bubbles is filmed simultaneously. Several trains of bubbles are studied, interactions between bubbles being gradually increased. Referring to image analysis, several ways to derive mean bubble velocities from optic probe data have been compared. Crenels from front tipand rear tipra w signals are associated and individual bubble velocities are derived. Nevertheless, complete velocity distributions are difficult to obtain, as they depend on the choice of the time within which the bubble is searched on the second tip. Using a simpler approach it is shown that the most probable velocity, calculated through the raw signals inter-correlation, is a correct estimation of the average bubble velocity. Concerning bubble size, bubble chord distributions show too high values due to bubble distortion and deviation. A simplified estimation of bubble mean Sauter diameter, using the most reliable measurements only (i.e., local gas hold-up, local mean bubbling frequency, and most probable bubble velocity), was tested for highly distorted bubbles; this method was validated both in water and cyclohexane

    Mass transfer in bubble column for industrial conditions—effects of organic medium, gas and liquid flowrates and column design

    Get PDF
    Most of available gas–liquid mass transfer data in bubble column have been obtained in aqueous media and in liquid batch conditions, contrary to industrial chemical reactor conditions. This work provides new data more relevant for industrial conditions, including comparison of water and organic media, effects of large liquid and gas velocities, perforated plates and sparger hole diameter. The usual dynamic O2 methods for mass transfer investigation were not convenient in this work (cyclohexane, liquid circulation). Steadystate mass transfer of CO2 in an absorption–desorption loop has been quantified by IR spectrometry. Using a simple RTD characterization, mass transfer efficiency and kLa have been calculated in a wide range of experimental conditions. Due to large column height and gas velocity, mass transfer efficiency is high, ranging between 40% and 90%. kLa values stand between 0.015 and 0.050 s−1 and depend mainly on superficial gas velocity. No significant effects of column design and media have been shown. At last, using both global and local hydrodynamics data, mass transfer connection with hydrodynamics has been investigated through kLa/G and kLa/a
    corecore