3,312 research outputs found
Dendrimer Conjugation Enhances Tumor Penetration and Cell Kill of Doxorubicin in 3D Coculture Lung Cancer Models
Background: Doxorubicin (DOX) is a potent chemotherapeutic widely used for solid tumors (1). Despite high efficacy in 2D cell culture, DOX efficacy does not translate to in vivo lung cancer models (2). Major side effects such as cardiotoxicity may be alleviated with nano-based drug delivery systems (nanoDDS). However, tumor penetration of DOX and DOX-nanoDDS is largely unknown and is an additional barrier to effective clinical therapy (3). Here we describe a nanoDDS capable of enhancing the penetration of DOX.
Methods: DOX was conjugated to generation 4 poly(amido-amine) dendrimers through (GFLG) tumor- liable bond. G4SA-GFLG-DOX was synthesized/characterized. spheroids were formed of (A549) lung adenocarcinoma cells and (3T3) fibroblasts. Spheroids were characterized for ECM components with immunohistochemistry. Confocal microscopy was used to evaluate the penetration, internalization, and colocalization of DOX and G4SA-GFLG-DOX. MTT assay and Caspase 3/7 to assess 2D and 3D cytotoxicity. Flow cytometry to determine cells uptake.
Results: DOX conjugation to dendrimer resulted in G4SA-GFLG-DOX with ~5.5 DOX, 10±1 nm hydrodynamic diameter, and a -17±3 mV zeta-potential. Spheroids of (A549:3T3) were ECM- rich, developed ECM containing collagen-I, hyaluronan, laminin, and fibronectin. While DOX and G4SA-GFLG-DOX had similar toxicities in 2D model, G4SA-GFLG-DOX demonstrated a 3.1-fold greater penetration into spheroids compared to DOX and correlated to a greater efficacy as measured by caspase 3/7 activity. Also, flow cytometry showed higher uptake of G4SA- GFLG-DOX in cancer cells compared to fibroblasts.
Conclusion: The work demonstrates enhanced penetration of DOX, via dendrimer conjugation, into an ECM- rich 3D lung cancer model. The enhanced penetration of G4SA-GFLG-DOX correlated with greater antitumor efficacy.
Acknowledgements: We acknowledge partial financial support from the Center for Pharmaceutical Engineering and Sciences - School of Pharmacy at VCU. This study was supported by VCU Quest for Distinction and NSF (DRM #1508363). Microscopy was performed at the VCU Microscopy Facility, supported, in part, by funding from NIH-NCI Cancer Center Support Grant P30 CA016059. RA would like to acknowledge King Faisal University (KFU) and Saudi Arabian Cultural Mission (SACM) for a scholarship.https://scholarscompass.vcu.edu/gradposters/1091/thumbnail.jp
Strict Interpretation of 35 U.S.C. § 112: Requires Universities to Examine Their Patenting Methods
Strict Interpretation of 35 U.S.C. § 112: Requires Universities to Examine Their Patenting Methods
Woody plant reinvasion shortens the lifespan of grassland restoration treatments
An important question in restoration ecology is whether restored ecological regimes are more vulnerable to transitions back to a degraded state. In woody-invaded grasslands, high-intensity fire can collapse woody plant communities and induce a shift back to a grass-dominated regime. Yet, legacies from woody-dominated regimes often persist and it remains unclear whether restored regimes are at heightened vulnerability to reinvasion. In this study, we utilize a 17-year history of fire-based restoration in Nebraska\u27s Loess Canyons Experimental Landscape to determine whether restored grassland regimes experience faster rates of Juniperus virginiana (eastern redcedar) reinvasion compared to the initial invasion process in adjacent grasslands. In addition, we examine whether reinvasion and invasion patterns are clearly differentiated based on former ecotonal boundaries between grassland and woodland regimes. Our results show that J. virginiana reinvasion of restored grassland regimes outpaced the initial invasion process in adjacent grasslands, providing evidence that restored grassland regimes are more vulnerable to transitions back to woody dominance. J. virginiana seedlings established sooner and increased faster in density and cover during reinvasion compared to the initial invasion process. Seedlings established 1-year post-fire in restored grassland regimes compared to 14-years post-fire in adjacent grasslands that were \u3e40 m from the former grassland-woodland boundary. Reinvasion was initially easy to differentiate from invasion based on former ecotonal boundaries between grassland and woodland; however, reestablished juniper woodlands eventually began to expand into adjacent grasslands. Our findings demonstrate clear differences between reinvasion and invasion and highlight the need for management frameworks that explicitly account for reinvasion
Towards a situated, multimodal interface for multiple UAV control
Multiple autonomous Unmanned Aerial Vehicles (UAVs) can be used to complement human teams. This paper presents the results of an exploratory study to investigate gesture/ speech interfaces for interaction with robots in a situated manner and the development of three iterations of a prototype command set. A command set was compiled from observing users interacting with a simulated interface in a virtual reality environment. We discovered that users find this type of interface intuitive and their commands tend to naturally group into both 'High-Level' and 'Low-Level' instructions. However, as the robots moved further away, the loss of depth perception and direct feedback was inimical to the interaction. In a second experiment we found that using simple heads up display elements could mitigate these issues. ©2010 IEEE
Recommended from our members
Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis
Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease, caused by a combination of genetic and environmental factors. Animal models suggest a role for intestinal bacteria in supporting the systemic immune response required for joint inflammation. Here we performed 16S sequencing on 114 stool samples from rheumatoid arthritis patients and controls, and shotgun sequencing on a subset of 44 such samples. We identified the presence of Prevotella copri as strongly correlated with disease in new-onset untreated rheumatoid arthritis (NORA) patients. Increases in Prevotella abundance correlated with a reduction in Bacteroides and a loss of reportedly beneficial microbes in NORA subjects. We also identified unique Prevotella genes that correlated with disease. Further, colonization of mice revealed the ability of P. copri to dominate the intestinal microbiota and resulted in an increased sensitivity to chemically induced colitis. This work identifies a potential role for P. copri in the pathogenesis of RA. DOI: http://dx.doi.org/10.7554/eLife.01202.00
Impact of Eastern Redcedar Proliferation on Water Resources in the Great Plains USA—Current State of Knowledge
In the Great Plains of the central United States, water resources for human and aquatic life rely primarily on surface runoff and local recharge from rangelands that are under rapid transformation to woodland by the encroachment of Eastern redcedar (redcedar; Juniperus virginiana) trees. In this synthesis, the current understanding and impact of redcedar encroachment on the water budget and water resources available for non-ecosystem use are reviewed. Existing studies concluded that the conversion from herbaceous-dominated rangeland to redcedar woodland increases precipitation loss to canopy interception and vegetation transpiration. The decrease of soil moisture, particularly for the subsurface soil layer, is widely documented. The depletion of soil moisture is directly related to the observed decrease in surface runoff, and the potential of deep recharge for redcedar encroached watersheds. Model simulations suggest that complete conversion of the rangelands to redcedar woodland at the watershed and basin scale in the South-central Great Plains would lead to reduced streamflow throughout the year, with the reductions of streamflow between 20 to 40% depending on the aridity of the climate of the watershed. Recommended topics for future studies include: (i) The spatial dynamics of redcedar proliferation and its impact on water budget across a regional hydrologic network; (ii) the temporal dynamics of precipitation interception by the herbaceous canopy; (iii) the impact of redcedar infilling into deciduous forests such as the Cross Timbers and its impact on water budget and water availability for non-ecosystem use; (iv) land surface and climate interaction and cross-scale hydrological modeling and forecasting; (v) impact of redcedar encroachment on sediment production and water quality; and (vi) assessment and efficacy of different redcedar control measures in restoring hydrological functions of watershed
High intensity neutrino oscillation facilities in Europe
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …