210 research outputs found
A bipartite graph with non-unimodal independent set sequence
We show that the independent set sequence of a bipartite graph need not be
unimodal
How friends and non-determinism affect opinion dynamics
The Hegselmann-Krause system (HK system for short) is one of the most popular
models for the dynamics of opinion formation in multiagent systems. Agents are
modeled as points in opinion space, and at every time step, each agent moves to
the mass center of all the agents within unit distance. The rate of convergence
of HK systems has been the subject of several recent works. In this work, we
investigate two natural variations of the HK system and their effect on the
dynamics. In the first variation, we only allow pairs of agents who are friends
in an underlying social network to communicate with each other. In the second
variation, agents may not move exactly to the mass center but somewhere close
to it. The dynamics of both variants are qualitatively very different from that
of the classical HK system. Nevertheless, we prove that both these systems
converge in polynomial number of non-trivial steps, regardless of the social
network in the first variant and noise patterns in the second variant.Comment: 14 pages, 3 figure
Lower bounds for constant query affine-invariant LCCs and LTCs
Affine-invariant codes are codes whose coordinates form a vector space over a
finite field and which are invariant under affine transformations of the
coordinate space. They form a natural, well-studied class of codes; they
include popular codes such as Reed-Muller and Reed-Solomon. A particularly
appealing feature of affine-invariant codes is that they seem well-suited to
admit local correctors and testers.
In this work, we give lower bounds on the length of locally correctable and
locally testable affine-invariant codes with constant query complexity. We show
that if a code is an -query
locally correctable code (LCC), where is a finite field and
is a finite alphabet, then the number of codewords in is
at most . Also, we show that if
is an -query locally testable
code (LTC), then the number of codewords in is at most
. The dependence on in these
bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan
(ITCS `13) construct affine-invariant codes via lifting that have the same
asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas
previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive
similar results.
Our analysis uses higher-order Fourier analysis. In particular, we show that
the codewords corresponding to an affine-invariant LCC/LTC must be far from
each other with respect to Gowers norm of an appropriate order. This then
allows us to bound the number of codewords, using known decomposition theorems
which approximate any bounded function in terms of a finite number of
low-degree non-classical polynomials, upto a small error in the Gowers norm
Testing Low Complexity Affine-Invariant Properties
Invariance with respect to linear or affine transformations of the domain is
arguably the most common symmetry exhibited by natural algebraic properties. In
this work, we show that any low complexity affine-invariant property of
multivariate functions over finite fields is testable with a constant number of
queries. This immediately reproves, for instance, that the Reed-Muller code
over F_p of degree d < p is testable, with an argument that uses no detailed
algebraic information about polynomials except that low degree is preserved by
composition with affine maps.
The complexity of an affine-invariant property P refers to the maximum
complexity, as defined by Green and Tao (Ann. Math. 2008), of the sets of
linear forms used to characterize P. A more precise statement of our main
result is that for any fixed prime p >=2 and fixed integer R >= 2, any
affine-invariant property P of functions f: F_p^n -> [R] is testable, assuming
the complexity of the property is less than p. Our proof involves developing
analogs of graph-theoretic techniques in an algebraic setting, using tools from
higher-order Fourier analysis.Comment: 38 pages, appears in SODA '1
Improved Bounds for Universal One-Bit Compressive Sensing
Unlike compressive sensing where the measurement outputs are assumed to be
real-valued and have infinite precision, in "one-bit compressive sensing",
measurements are quantized to one bit, their signs. In this work, we show how
to recover the support of sparse high-dimensional vectors in the one-bit
compressive sensing framework with an asymptotically near-optimal number of
measurements. We also improve the bounds on the number of measurements for
approximately recovering vectors from one-bit compressive sensing measurements.
Our results are universal, namely the same measurement scheme works
simultaneously for all sparse vectors.
Our proof of optimality for support recovery is obtained by showing an
equivalence between the task of support recovery using 1-bit compressive
sensing and a well-studied combinatorial object known as Union Free Families.Comment: 14 page
- …