210 research outputs found

    A bipartite graph with non-unimodal independent set sequence

    Full text link
    We show that the independent set sequence of a bipartite graph need not be unimodal

    How friends and non-determinism affect opinion dynamics

    Full text link
    The Hegselmann-Krause system (HK system for short) is one of the most popular models for the dynamics of opinion formation in multiagent systems. Agents are modeled as points in opinion space, and at every time step, each agent moves to the mass center of all the agents within unit distance. The rate of convergence of HK systems has been the subject of several recent works. In this work, we investigate two natural variations of the HK system and their effect on the dynamics. In the first variation, we only allow pairs of agents who are friends in an underlying social network to communicate with each other. In the second variation, agents may not move exactly to the mass center but somewhere close to it. The dynamics of both variants are qualitatively very different from that of the classical HK system. Nevertheless, we prove that both these systems converge in polynomial number of non-trivial steps, regardless of the social network in the first variant and noise patterns in the second variant.Comment: 14 pages, 3 figure

    Lower bounds for constant query affine-invariant LCCs and LTCs

    Get PDF
    Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are invariant under affine transformations of the coordinate space. They form a natural, well-studied class of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers. In this work, we give lower bounds on the length of locally correctable and locally testable affine-invariant codes with constant query complexity. We show that if a code CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally correctable code (LCC), where K\mathbb{K} is a finite field and Σ\Sigma is a finite alphabet, then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr1))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-1})). Also, we show that if CΣKn\mathcal{C} \subset \Sigma^{\mathbb{K}^n} is an rr-query locally testable code (LTC), then the number of codewords in C\mathcal{C} is at most exp(OK,r,Σ(nr2))\exp(O_{\mathbb{K}, r, |\Sigma|}(n^{r-2})). The dependence on nn in these bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS `13) construct affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM `11) assumed linearity to derive similar results. Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corresponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm of an appropriate order. This then allows us to bound the number of codewords, using known decomposition theorems which approximate any bounded function in terms of a finite number of low-degree non-classical polynomials, upto a small error in the Gowers norm

    Testing Low Complexity Affine-Invariant Properties

    Full text link
    Invariance with respect to linear or affine transformations of the domain is arguably the most common symmetry exhibited by natural algebraic properties. In this work, we show that any low complexity affine-invariant property of multivariate functions over finite fields is testable with a constant number of queries. This immediately reproves, for instance, that the Reed-Muller code over F_p of degree d < p is testable, with an argument that uses no detailed algebraic information about polynomials except that low degree is preserved by composition with affine maps. The complexity of an affine-invariant property P refers to the maximum complexity, as defined by Green and Tao (Ann. Math. 2008), of the sets of linear forms used to characterize P. A more precise statement of our main result is that for any fixed prime p >=2 and fixed integer R >= 2, any affine-invariant property P of functions f: F_p^n -> [R] is testable, assuming the complexity of the property is less than p. Our proof involves developing analogs of graph-theoretic techniques in an algebraic setting, using tools from higher-order Fourier analysis.Comment: 38 pages, appears in SODA '1

    Improved Bounds for Universal One-Bit Compressive Sensing

    Full text link
    Unlike compressive sensing where the measurement outputs are assumed to be real-valued and have infinite precision, in "one-bit compressive sensing", measurements are quantized to one bit, their signs. In this work, we show how to recover the support of sparse high-dimensional vectors in the one-bit compressive sensing framework with an asymptotically near-optimal number of measurements. We also improve the bounds on the number of measurements for approximately recovering vectors from one-bit compressive sensing measurements. Our results are universal, namely the same measurement scheme works simultaneously for all sparse vectors. Our proof of optimality for support recovery is obtained by showing an equivalence between the task of support recovery using 1-bit compressive sensing and a well-studied combinatorial object known as Union Free Families.Comment: 14 page
    corecore