40 research outputs found
Online Mixed Packing and Covering
In many problems, the inputs arrive over time, and must be dealt with
irrevocably when they arrive. Such problems are online problems. A common
method of solving online problems is to first solve the corresponding linear
program, and then round the fractional solution online to obtain an integral
solution.
We give algorithms for solving linear programs with mixed packing and
covering constraints online. We first consider mixed packing and covering
linear programs, where packing constraints are given offline and covering
constraints are received online. The objective is to minimize the maximum
multiplicative factor by which any packing constraint is violated, while
satisfying the covering constraints. No prior sublinear competitive algorithms
are known for this problem. We give the first such --- a
polylogarithmic-competitive algorithm for solving mixed packing and covering
linear programs online. We also show a nearly tight lower bound.
Our techniques for the upper bound use an exponential penalty function in
conjunction with multiplicative updates. While exponential penalty functions
are used previously to solve linear programs offline approximately, offline
algorithms know the constraints beforehand and can optimize greedily. In
contrast, when constraints arrive online, updates need to be more complex.
We apply our techniques to solve two online fixed-charge problems with
congestion. These problems are motivated by applications in machine scheduling
and facility location. The linear program for these problems is more
complicated than mixed packing and covering, and presents unique challenges. We
show that our techniques combined with a randomized rounding procedure give
polylogarithmic-competitive integral solutions. These problems generalize
online set-cover, for which there is a polylogarithmic lower bound. Hence, our
results are close to tight
The Complexity of Partial Function Extension for Coverage Functions
Coverage functions are an important subclass of submodular functions, finding applications in machine learning, game theory, social networks, and facility location. We study the complexity of partial function extension to coverage functions. That is, given a partial function consisting of a family of subsets of [m] and a value at each point, does there exist a coverage function defined on all subsets of [m] that extends this partial function? Partial function extension is previously studied for other function classes, including boolean functions and convex functions, and is useful in many fields, such as obtaining bounds on learning these function classes.
We show that determining extendibility of a partial function to a coverage function is NP-complete, establishing in the process that there is a polynomial-sized certificate of extendibility. The hardness also gives us a lower bound for learning coverage functions. We then study two natural notions of approximate extension, to account for errors in the data set. The two notions correspond roughly to multiplicative point-wise approximation and additive L_1 approximation. We show upper and lower bounds for both notions of approximation. In the second case we obtain nearly tight bounds
A Stackelberg Strategy for Routing Flow over Time
Routing games are used to to understand the impact of individual users'
decisions on network efficiency. Most prior work on routing games uses a
simplified model of network flow where all flow exists simultaneously, and
users care about either their maximum delay or their total delay. Both of these
measures are surrogates for measuring how long it takes to get all of a user's
traffic through the network. We attempt a more direct study of how competition
affects network efficiency by examining routing games in a flow over time
model. We give an efficiently computable Stackelberg strategy for this model
and show that the competitive equilibrium under this strategy is no worse than
a small constant times the optimal, for two natural measures of optimality
The Network Improvement Problem for Equilibrium Routing
In routing games, agents pick their routes through a network to minimize
their own delay. A primary concern for the network designer in routing games is
the average agent delay at equilibrium. A number of methods to control this
average delay have received substantial attention, including network tolls,
Stackelberg routing, and edge removal.
A related approach with arguably greater practical relevance is that of
making investments in improvements to the edges of the network, so that, for a
given investment budget, the average delay at equilibrium in the improved
network is minimized. This problem has received considerable attention in the
literature on transportation research and a number of different algorithms have
been studied. To our knowledge, none of this work gives guarantees on the
output quality of any polynomial-time algorithm. We study a model for this
problem introduced in transportation research literature, and present both
hardness results and algorithms that obtain nearly optimal performance
guarantees.
- We first show that a simple algorithm obtains good approximation guarantees
for the problem. Despite its simplicity, we show that for affine delays the
approximation ratio of 4/3 obtained by the algorithm cannot be improved.
- To obtain better results, we then consider restricted topologies. For
graphs consisting of parallel paths with affine delay functions we give an
optimal algorithm. However, for graphs that consist of a series of parallel
links, we show the problem is weakly NP-hard.
- Finally, we consider the problem in series-parallel graphs, and give an
FPTAS for this case.
Our work thus formalizes the intuition held by transportation researchers
that the network improvement problem is hard, and presents topology-dependent
algorithms that have provably tight approximation guarantees.Comment: 27 pages (including abstract), 3 figure
Nearly Tight Bounds on Approximate Equilibria in Spatial Competition on the Line
In Hotelling's model of spatial competition, a unit mass of voters is
distributed in the interval (with their location corresponding to their
political persuasion), and each of candidates selects as a strategy his
distinct position in this interval. Each voter votes for the nearest candidate,
and candidates choose their strategy to maximize their votes. It is known that
if there are more than two candidates, equilibria may not exist in this model.
It was unknown, however, how close to an equilibrium one could get. Our work
studies approximate equilibria in this model, where a strategy profile is an
(additive) -equilibria if no candidate can increase their votes by
, and provides tight or nearly-tight bounds on the approximation
achievable.
We show that for 3 candidates, for any distribution of the voters, . Thus, somewhat surprisingly, for any distribution of the voters and
any strategy profile of the candidates, at least th of the total votes is
always left ``on the table.'' Extending this, we show that in the worst case,
there exist voter distributions for which , and this is
tight: one can always compute a -approximate equilibria. We then study the
general case of candidates, and show that as grows large, we get closer
to an exact equilibrium: one can always obtain an -approximate
equilibria in polynomial time. We show this bound is asymptotically tight, by
giving voter distributions for which
Partial Function Extension with Applications to Learning and Property Testing
Partial function extension is a basic problem that underpins multiple research topics in optimization, including learning, property testing, and game theory. Here, we are given a partial function consisting of n points from a domain and a function value at each point. Our objective is to determine if this partial function can be extended to a function defined on the domain, that additionally satisfies a given property, such as linearity. We formally study partial function extension to fundamental properties in combinatorial optimization - subadditivity, XOS, and matroid independence. A priori, it is not clear if partial function extension for these properties even lies in NP (or coNP).
Our contributions are twofold. Firstly, for the properties studied, we give bounds on the complexity of partial function extension. For subadditivity and XOS, we give tight bounds on approximation guarantees as well. Secondly, we develop new connections between partial function extension and learning and property testing, and use these to give new results for these problems. In particular, for subadditive functions, we give improved lower bounds on learning, as well as the first subexponential-query tester
Network improvement for equilibrium routing
Routing games are frequently used to model the behavior of traffic in large networks, such as road networks. In transportation research, the problem of adding capacity to a road network in a cost-effective manner to minimize the total delay at equilibrium is known as the Network Design Problem, and has received considerable attention. However, prior to our work, little was known about guarantees for polynomial-time algorithms for this problem. We obtain tight approximation guarantees for general and series-parallel networks, and present a number of open questions for future work