73 research outputs found
Study of a High-Efficient Wide-Bandgap DC-DC Power Converter for Solar Power Integration
This research focuses on the design and analysis of a Boost cascaded Buck-Boost (BoCBB) power converter with super high efficiency in electric power conversion. The BoCBB power converter is based on emerging wide-bandgap silicon-carbide (SiC) MOSFETs and Schottky diodes, which have only 1/6 times of power loss in traditional silicon power semiconductor devices. The BoCBB power converter can be widely applied in solar harvesting for the National Aeronautics and Space Administration (NASA), military bases and electric utilities, as well as high-power DC motor drives for the electric vehicles, robotics, and manufacturing and product lines.
This research analyzed the topology and energy efficiency of a 3-kW BoCBB power converter. The energy efficiency of the SiC-based BoCBB power converter was calculated under various switching frequencies (20-kHz – 100-kHz) and was first tested by a simulation study of solar power integration in a 400-Vdc distribution microgrid in Matlab/Simulink environment. The design of 50-kHz in switching frequency revealed to be optimal in overall system performance. This conclusion was further verified by experimental tests. The experimental tests demonstrated a high efficiency of above 97% in power conversion. In order to improve the power quality of the BoCBB power converter for time-varying solar radiation, a novel sliding-window-combined (SWC) hysteresis control technique was proposed and preliminarily verified by a simulation study to enhance transients of a power grid
Optimization of 8-Plate Multi-Resonant Coupling Structure Using Class-E\u3csup\u3e2\u3c/sup\u3e Based Capacitive-Wireless Power Transfer System
Capacitive-wireless power transfer (CPT) effectively charges battery-powered devices without a physical contact. It is an alternative to inductive-wireless power transfer (IPT) which is available in the present market. Compared with IPT, CPT offers flexibility in designing the coupling section. Because of its flexibility, CPT utilizes various coupling methods to enhance the coupling capacitance. Misalignment is a common issue in any WPT system. Among IPT and CPT, IPT has better performance for misalignments, but it requires bulk and expensive ferrite core to attain a high coupling coefficient. This work focuses on designing a CPT system to minimize the impact of misalignments. In this research, a novel 8-plate multi-resonant Class-E2 CPT system is developed to improve the performance of the CPT system for misalignments. The proposed CPT model expands the resonant frequency band, which results in better performance for misalignments compared with the regular 4-plate CPT system. The 8-plate coupling structure is designed to charge a 100 Ah drone battery. For this application, the coupling is formed when the drone lands on the capacitive- wireless charging pad. This work also presents the analysis of several dielectric materials with different dielectric constants. A well-designed capacitive coupler can effectively limit harmonics during the interaction between transmitter and receiver. Also, the effect of coupling plate shape is identified on the CPT system. The hardware tests indicate the round-shaped plates have better stability in coupling capacitance with the variation in frequency. The effect of misalignments is studied through the impedance tracking of the Class-E2 power converter.
Impedance plots for 50 μH, and 100 μH resonant inductors are used to determine input current peak for each case. Additionally, hardware tests are performed to study the variation of input current and output voltage for a range of frequencies. The test results indicate the efficiency at optimal impedance point for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor which highlights the effects of the resonant inductor on efficiency. The zero-voltage-switching (ZVS) limits are also identified for varying frequencies and duty cycles. Later in this research, the optimal design of the Class-E rectifier is identified to enhance the power transfer. Several cases were considered to investigate the impact of the secondary inductor on the output voltage and the ZVS property. Hardware tests validate that under optimal conditions the efficiency of the Class-E2 based CPT system improves by 18% compared with Ar \u3e\u3c 1. Further work presents the advantages of 8-plate multi-resonant coupling for misalignments. The proposed model has a simple design procedure which enhances the power flow from the inverter to the rectifier section. The hardware results of the proposed 8-plate multi-resonant coupling show an increase in efficiency to 88.5% for the 20.8 W test, which is 18% higher than regular 4-plate coupling. Because of the wider resonant frequency band [455- 485 kHz], compared with regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for 10% misalignment. Even for large misalignments, 8-plate improves the CPT performance by 40% compared with 4-plate coupling
A Case Study: Influence of Circuit Impedance on the Performance of Class-E² Resonant Power Converter for Capacitive Wireless Power Transfer
The evolution of power electronics led to rapid development in wireless charging technology; as a result, a single active switch topology was introduced. The present market utilizes inductive wireless power transfer (IPT); because of the disadvantages of cost, size, and safety concerns, research on wireless power transfer was diverted towards capacitive wireless power transfer (CPT). This paper studies the optimal impedance tracking of the capacitive wireless power transfer system for maximum power transfer. Compared to prior methods developed for maximum power point tracking in power control, this paper proposes a new approach by means of finding impedance characteristics of the CPT system for a certain range of frequencies. Considering the drone battery as an application, a single active switch Class-E2 resonant converter with circular coupling plates is utilized. Impedance characteristics are identified with the help of equations related to the input and resonant impedance. The impedance tracking is laid out for various resonant inductors, and the difference in current peak is observed for each case. Simulations verify and provide additional information on the reactive type. Additionally, hardware tests provide the variation of input current and output voltage for a range of frequencies from 70 kHz to 300 kHz. Efficiency at the optimal impedance points for a resonant inductor with 50 μH and 100 μH are tested and analyzed. It is noted that the efficiency for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor. Further hardware tests were performed to investigate the impact of frequency and duty cycle variation. Zero-voltage-switching (ZVS) limits have been discussed with respect to both frequency and duty cycle
8-Plate Multi-Resonant Coupling Using a Class-E\u3csup\u3e2\u3c/sup\u3e Power Converter For Misalignments in Capacitive Wireless Power Transfer
Misalignment is a common issue in wireless power transfer systems. It shifts the resonant frequency away from the operating frequency that affects the power flow and efficiency from the charging station to the load. This work proposes a novel capacitive wireless power transfer (CPT) using an 8-plate multi-resonant capacitive coupling to minimize the effect of misalignments. A single-active switch class-E2 power converter is utilized to achieve multi-resonance through the selection of different resonant inductors. Simulations show a widening of the resonant frequency band which offers better performance than a regular 4-plate capacitive coupling for misalignments. The hardware results of the 8-plate multi-resonant coupling show an efficiency of 88.5% for the 20.8 W test, which is 18.3% higher than that of the regular 4-plate coupling. Because of the wider resonant frequency band {455–485 kHz}, compared with the regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for a 10% misalignment. Even for large misalignments, the 8-plate performance improved by 40% compared with the 4-plate coupling
Analyzing Influential Factors in Capacitive-Coupled Wireless Power Transfer
Wireless power transfer (WPT) is an emerging technology and trending topic in the field of research and commercial area, it provides convenience for electrical users to charge devices by means of avoiding power cables. It has proven to be applicable from low power: mobile devices, to high power: Electric Vehicles (EV), and many other applications for battery charging. During the past, most of research focused on inductive-wireless power transfer. But, recently, capacitive-wireless power transfer (C-WPT) has proven to be efficient over inductive-wireless power transfer for near-field transmission. Capacitive- Wireless power transfer uses electric field to transfer power from transmitter to receiver by means of capacitive plates. In this work, we analyzed the resonant points of a Switch-Inductor-Inductor-Diode (SLLD) circuit. The SLLD circuit has a relatively-simple topology with only one switching device, which makes it obtaining a potential of high efficiency and easy to identify the impact of each component on system performance. The SLLD circuit is applicable for both low power and high power applications. According to the resonant points, the circuit parameters were specified to obtain the controllability of MPPT. The influential factors were analyzed and verified by experimental tests.https://digitalcommons.odu.edu/engineering_batten/1004/thumbnail.jp
Recommended from our members
Neutron Transmission Experiments in Liquid Argon
Neutrino oscillation experiments are entering a high-statistics and precision measurements era. Next generation experiments including Hyper-K, JUNO, and DUNE are slated to come online in this decade. Among them, DUNE provides a promising a way forward to solve the unanswered questions about neutrino mass ordering and CP violation, and better our understanding of the universe. DUNE has stringent requirements to constrain the systematic uncertainties, variations in which have large effects on CP violation measurement. Accurate energy scale and energy resolution calibration are important to reduce uncertainties of the reconstructed energy in neutrino events. DUNE far detector will be the largest liquid argon time projection chamber (LArTPC) ever built, bringing with it some unique challenges for calibrating the detector, owing to its size and its location deep underground. Understanding detector response to neutrons is crucial to reduce the uncertainties on reconstructed neutrino energy, especially in the low energy regime like studying the neutrinos from supernova neutrino bursts (SNBs).The pulsed neutron source (PNS) system is one of the proposed calibration systems for DUNE, aimed at calibrating the absolute energy scale and also acting as a fake SNB trigger. To achieve this, it is important to understand the neutron propagation and capture in liquid argon (LAr). One of the quantities important for this is the total neutron cross section on argon, which determines how far neutrons travel in LAr before interacting. Accurate measurements of this over a wide range of neutron energies is important to improve the simulation program.This thesis presents the efforts by the neutrino group at UC Davis towards these goals, including a test for the PNS system at the ProtoDUNE Single Phase (SP) detector with a neutron generator, the Argon Resonant Transport Interaction Experiment (ARTIE) which measured the dip at 57 keV in the neutron total cross section on argon, and a test for transmission experiments at the n_TOF facility at CERN as a part of the larger Multiple Argon Experiments (MArEx) initiative
A Case Study: Influence of Circuit Impedance on the Performance of Class-E2 Resonant Power Converter for Capacitive Wireless Power Transfer
The evolution of power electronics led to rapid development in wireless charging technology; as a result, a single active switch topology was introduced. The present market utilizes inductive wireless power transfer (IPT); because of the disadvantages of cost, size, and safety concerns, research on wireless power transfer was diverted towards capacitive wireless power transfer (CPT). This paper studies the optimal impedance tracking of the capacitive wireless power transfer system for maximum power transfer. Compared to prior methods developed for maximum power point tracking in power control, this paper proposes a new approach by means of finding impedance characteristics of the CPT system for a certain range of frequencies. Considering the drone battery as an application, a single active switch Class-E2 resonant converter with circular coupling plates is utilized. Impedance characteristics are identified with the help of equations related to the input and resonant impedance. The impedance tracking is laid out for various resonant inductors, and the difference in current peak is observed for each case. Simulations verify and provide additional information on the reactive type. Additionally, hardware tests provide the variation of input current and output voltage for a range of frequencies from 70 kHz to 300 kHz. Efficiency at the optimal impedance points for a resonant inductor with 50 μH and 100 μH are tested and analyzed. It is noted that the efficiency for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor. Further hardware tests were performed to investigate the impact of frequency and duty cycle variation. Zero-voltage-switching (ZVS) limits have been discussed with respect to both frequency and duty cycle.</jats:p
A Case Study: Influence of Circuit Impedance on the Performance of Class-E2 Resonant Power Converter for Capacitive Wireless Power Transfer
The evolution of power electronics led to rapid development in wireless charging technology; as a result, a single active switch topology was introduced. The present market utilizes inductive wireless power transfer (IPT); because of the disadvantages of cost, size, and safety concerns, research on wireless power transfer was diverted towards capacitive wireless power transfer (CPT). This paper studies the optimal impedance tracking of the capacitive wireless power transfer system for maximum power transfer. Compared to prior methods developed for maximum power point tracking in power control, this paper proposes a new approach by means of finding impedance characteristics of the CPT system for a certain range of frequencies. Considering the drone battery as an application, a single active switch Class-E2 resonant converter with circular coupling plates is utilized. Impedance characteristics are identified with the help of equations related to the input and resonant impedance. The impedance tracking is laid out for various resonant inductors, and the difference in current peak is observed for each case. Simulations verify and provide additional information on the reactive type. Additionally, hardware tests provide the variation of input current and output voltage for a range of frequencies from 70 kHz to 300 kHz. Efficiency at the optimal impedance points for a resonant inductor with 50 μH and 100 μH are tested and analyzed. It is noted that the efficiency for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor. Further hardware tests were performed to investigate the impact of frequency and duty cycle variation. Zero-voltage-switching (ZVS) limits have been discussed with respect to both frequency and duty cycle
8-Plate Multi-Resonant Coupling Using a Class-E2 Power Converter for Misalignments in Capacitive Wireless Power Transfer
Misalignment is a common issue in wireless power transfer systems. It shifts the resonant frequency away from the operating frequency that affects the power flow and efficiency from the charging station to the load. This work proposes a novel capacitive wireless power transfer (CPT) using an 8-plate multi-resonant capacitive coupling to minimize the effect of misalignments. A single-active switch class-E2 power converter is utilized to achieve multi-resonance through the selection of different resonant inductors. Simulations show a widening of the resonant frequency band which offers better performance than a regular 4-plate capacitive coupling for misalignments. The hardware results of the 8-plate multi-resonant coupling show an efficiency of 88.5% for the 20.8 W test, which is 18.3% higher than that of the regular 4-plate coupling. Because of the wider resonant frequency band {455–485 kHz}, compared with the regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for a 10% misalignment. Even for large misalignments, the 8-plate performance improved by 40% compared with the 4-plate coupling
8-Plate Multi-Resonant Coupling Using a Class-E2 Power Converter for Misalignments in Capacitive Wireless Power Transfer
Misalignment is a common issue in wireless power transfer systems. It shifts the resonant frequency away from the operating frequency that affects the power flow and efficiency from the charging station to the load. This work proposes a novel capacitive wireless power transfer (CPT) using an 8-plate multi-resonant capacitive coupling to minimize the effect of misalignments. A single-active switch class-E2 power converter is utilized to achieve multi-resonance through the selection of different resonant inductors. Simulations show a widening of the resonant frequency band which offers better performance than a regular 4-plate capacitive coupling for misalignments. The hardware results of the 8-plate multi-resonant coupling show an efficiency of 88.5% for the 20.8 W test, which is 18.3% higher than that of the regular 4-plate coupling. Because of the wider resonant frequency band {455–485 kHz}, compared with the regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for a 10% misalignment. Even for large misalignments, the 8-plate performance improved by 40% compared with the 4-plate coupling.</jats:p
- …