10,795 research outputs found

    The alpha-particle in nuclear matter

    Full text link
    Among the light nuclear clusters the alpha-particle is by far the strongest bound system and therefore expected to play a significant role in the dynamics of nuclei and the phases of nuclear matter. To systematically study the properties of the alpha-particle we have derived an effective four-body equation of the Alt-Grassberger-Sandhas (AGS) type that includes the dominant medium effects, i.e. self energy corrections and Pauli-blocking in a consistent way. The equation is solved utilizing the energy dependent pole expansion for the sub system amplitudes. We find that the Mott transition of an alpha-particle at rest differs from that expected from perturbation theory and occurs at approximately 1/10 of nuclear matter densities.Comment: 9 pages RevTex file, 1 figure, submitted to Phys. Lett.

    Deuteron formation in nuclear matter

    Get PDF
    We investigate deuteron formation in nuclear matter at finite temperatures within a systematic quantum statistical approach. We consider formation through three-body collisions relevant already at rather moderate densities because of the strong correlations. The three-body in-medium reaction rates driven by the break-up cross section are calculated using exact three-body equations (Alt-Grassberger-Sandhas type) that have been suitably modified to consistently include the energy shift and the Pauli blocking. Important quantities are the lifetime of deuteron fluctuations and the chemical relaxation time. We find that the respective times differ substantially while using in-medium or isolated cross sections. We expect implications for the description of heavy ion collisions in particular for the formation of light charged particles at low to intermediate energies.Comment: 19 pages, 5 figure

    Coupled dark energy and dark matter from dilatation anomaly

    Full text link
    Cosmological runaway solutions may exhibit an exact dilatation symmetry in the asymptotic limit of infinite time. In this limit, the massless dilaton or cosmon could be accompanied by another massless scalar field - the geon. At finite time, small time-dependent masses for both the cosmon and geon are still present due to imperfect dilatation symmetry. For a sufficiently large mass the geon will start oscillating and play the role of dark matter, while the cosmon is responsible for dark energy. The common origin of the mass of both fields leads to an effective interaction between dark matter and dark energy. Realistic cosmologies are possible for a simple form of the effective cosmon-geon-potential. We find an inverse geon mass of a size where it could reduce subgalactic structure formation.Comment: 4 pages, 2 figure

    Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding

    Get PDF
    Range imagery from a laser scanner can be used to provide sufficient information for docking and obstacle avoidance procedures to be performed automatically. Three dimensional model-based computer vision algorithms in development can perform these tasks even with targets which may not be cooperative (that is, objects without special targets or markers to provide unambiguous points). Role, pitch, and yaw of a vehicle can be taken into account as image scanning takes place, so that these can be correlated when the image is converted from egocentric to world coordinated. Other attributes of the sensor, such as the registered reflectance and texture channels, provide additional data sources for algorithm robustness

    Galileo early cruise, including Venus, first Earth, and Gaspra encounters

    Get PDF
    This article documents Deep Space Network (DSN) support for the Galileo cruise to Jupiter. The unique trajectory affords multiple encounters during this cruise phase. Each encounter had or will have unique requirements for data acquisition and DSN support configurations. An overview of the cruise and encounters through the asteroid Gaspra encounter is provided

    Investigating the Physical Origin of Unconventional Low-Energy Excitations and Pseudogap Phenomena in Cuprate Superconductors

    Full text link
    We investigate the physical origin of unconventional low-energy excitations in cuprate superconductors by considering the effect of coexisting competing orders (CO) and superconductivity (SC) and of quantum fluctuations and other bosonic modes on the low-energy charge excitation spectra. By incorporating both SC and CO in the bare Green's function and quantum phase fluctuations in the self-energy, we can consistently account for various empirical findings in both the hole- and electron-type cuprates, including the excess subgap quasiparticle density of states, ``dichotomy'' in the fluctuation-renormalized quasiparticle spectral density in momentum space, and the occurrence and magnitude of a low-energy pseudogap being dependent on the relative gap strength of CO and SC. Comparing these calculated results with experiments of ours and others, we suggest that there are two energy scales associated with the pseudogap phenomena, with the high-energy pseudogap probably of magnetic origin and the low-energy pseudogap associated with competing orders.Comment: 10 pages, 5 figures. Invited paper for the 2006 Taiwan International Conference on Superconductivity. Correspondence author: Nai-Chang Yeh (e-mail: [email protected]

    Medium corrections in the formation of light charged particles in heavy ion reactions

    Get PDF
    Within a microscopic statistical description of heavy ion collisions, we investigate the effect of the medium on the formation of light clusters. The dominant medium effects are self-energy corrections and Pauli blocking that produce the Mott effect for composite particles and enhanced reaction rates in the collision integrals. Microscopic description of composites in the medium follows the Dyson equation approach combined with the cluster mean-field expansion. The resulting effective few-body problem is solved within a properly modified Alt-Grassberger-Sandhas formalism. The results are incorporated in a Boltzmann-Uehling-Uhlenbeck simulation for heavy ion collisions. The number and spectra of light charged particles emerging from a heavy ion collision changes in a significant manner in effect of the medium modification of production and absorption processes.Comment: 16 pages, 6 figure
    • ‚Ķ
    corecore