11 research outputs found

    On the generalized logistic random differential equation: Theoretical analysis and numerical simulations with real-world data

    Get PDF
    [EN] Based on the previous literature about the random logistic and Gompertz models, the aim of this paper is to extend the investigations to the generalized logistic differential equation in the random setting. First, this is done by rigorously constructing its solution in two different ways, namely, the sample-path approach and the mean-square calculus. Secondly, the probability density function at each time instant is derived in two ways: by applying the random variable transformation technique and by solving the associated Liouville's partial differential equation. It is also proved that both the stochastic solution and its density function converge, under specific conditions, to the corresponding solution and density function of the logistic and Gompertz models, respectively. The investigation finishes showing some examples, where a number of computational techniques are combined to construct reliable approximations of the probability density of the stochastic solution. In particular, we show, step-by-step, how our findings can be applied to a real-world problem. (c) 2022 The Author(s). Published by Elsevier B.V.This work has been supported by the Spanish Agencia Estatal de Investigacion grant PID2020-115270GB-I00. Vicente Bevia acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Bevia, V.; Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2023). On the generalized logistic random differential equation: Theoretical analysis and numerical simulations with real-world data. Communications in Nonlinear Science and Numerical Simulation. 116. https://doi.org/10.1016/j.cnsns.2022.10683211

    Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters

    Full text link
    [EN] In spite of its simple formulation via a nonlinear differential equation, the Gompertz model has been widely applied to describe the dynamics of biological and biophysical parts of complex systems (growth of living organisms, number of bacteria, volume of infected cells, etc.). Its parameters or coefficients and the initial condition represent biological quantities (usually, rates and number of individual/particles, respectively) whose nature is random rather than deterministic. In this paper, we present a complete uncertainty quantification analysis of the randomized Gomperz model via the computation of an explicit expression to the first probability density function of its solution stochastic process taking advantage of the Liouville-Gibbs theorem for dynamical systems. The stochastic analysis is completed by computing other important probabilistic information of the model like the distribution of the time until the solution reaches an arbitrary value of specific interest and the stationary distribution of the solution. Finally, we apply all our theoretical findings to two examples, the first of numerical nature and the second to model the dynamics of weight of a species using real data.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Bevia, V.; Burgos, C.; Cortés, J.; Navarro-Quiles, A.; Villanueva Micó, RJ. (2020). Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters. Chaos, Solitons and Fractals. 138:1-12. https://doi.org/10.1016/j.chaos.2020.109908S112138Golec, J., & Sathananthan, S. (2003). Stability analysis of a stochastic logistic model. Mathematical and Computer Modelling, 38(5-6), 585-593. doi:10.1016/s0895-7177(03)90029-xCortés, J. C., Jódar, L., & Villafuerte, L. (2009). Random linear-quadratic mathematical models: Computing explicit solutions and applications. Mathematics and Computers in Simulation, 79(7), 2076-2090. doi:10.1016/j.matcom.2008.11.008Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Dorini, F. A., Bobko, N., & Dorini, L. B. (2016). A note on the logistic equation subject to uncertainties in parameters. Computational and Applied Mathematics, 37(2), 1496-1506. doi:10.1007/s40314-016-0409-6Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2019). Analysis of random non-autonomous logistic-type differential equations via the Karhunen–Loève expansion and the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 72, 121-138. doi:10.1016/j.cnsns.2018.12.013Calatayud, J., Cortés, J. C., & Jornet, M. (2019). Improving the approximation of the probability density function of random nonautonomous logistic‐type differential equations. Mathematical Methods in the Applied Sciences, 42(18), 7259-7267. doi:10.1002/mma.5834Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). Probabilistic solution of the homogeneous Riccati differential equation: A case-study by using linearization and transformation techniques. Journal of Computational and Applied Mathematics, 291, 20-35. doi:10.1016/j.cam.2014.11.028Hesam, S., Nazemi, A. R., & Haghbin, A. (2012). Analytical solution for the Fokker–Planck equation by differential transform method. Scientia Iranica, 19(4), 1140-1145. doi:10.1016/j.scient.2012.06.018Lakestani, M., & Dehghan, M. (2009). Numerical solution of Fokker-Planck equation using the cubic B-spline scaling functions. Numerical Methods for Partial Differential Equations, 25(2), 418-429. doi:10.1002/num.20352Mao, X., Yuan, C., & Yin, G. (2005). Numerical method for stationary distribution of stochastic differential equations with Markovian switching. Journal of Computational and Applied Mathematics, 174(1), 1-27. doi:10.1016/j.cam.2004.03.016Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Computing probabilistic solutions of the Bernoulli random differential equation. Journal of Computational and Applied Mathematics, 309, 396-407. doi:10.1016/j.cam.2016.02.034Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 195(2), 179-193. doi:10.1016/j.mbs.2005.02.004Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015Cortés, J. C., Navarro‐Quiles, A., Romero, J., & Roselló, M. (2019). (CMMSE2018 paper) Solving the random Pielou logistic equation with the random variable transformation technique: Theory and applications. Mathematical Methods in the Applied Sciences, 42(17), 5708-5717. doi:10.1002/mma.5440Dorini, F. A., & Cunha, M. C. C. (2011). On the linear advection equation subject to random velocity fields. Mathematics and Computers in Simulation, 82(4), 679-690. doi:10.1016/j.matcom.2011.10.008Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6Hussein, A., & Selim, M. M. (2013). A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 84-92. doi:10.1016/j.jqsrt.2013.03.018Hussein, A., & Selim, M. M. (2019). A complete probabilistic solution for a stochastic Milne problem of radiative transfer using KLE-RVT technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 232, 54-65. doi:10.1016/j.jqsrt.2019.04.034Cortés, J.-C., Jódar, L., Camacho, F., & Villafuerte, L. (2010). Random Airy type differential equations: Mean square exact and numerical solutions. Computers & Mathematics with Applications, 60(5), 1237-1244. doi:10.1016/j.camwa.2010.05.046Bekiryazici, Z., Merdan, M., & Kesemen, T. (2020). Modification of the random differential transformation method and its applications to compartmental models. Communications in Statistics - Theory and Methods, 50(18), 4271-4292. doi:10.1080/03610926.2020.1713372Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics, 151, 413-424. doi:10.1016/j.apnum.2020.01.012Laird, A. K. (1965). Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell. British Journal of Cancer, 19(2), 278-291. doi:10.1038/bjc.1965.32Nahashon, S. N., Aggrey, S. E., Adefope, N. A., Amenyenu, A., & Wright, D. (2006). Growth Characteristics of Pearl Gray Guinea Fowl as Predicted by the Richards, Gompertz, and Logistic Models. Poultry Science, 85(2), 359-363. doi:10.1093/ps/85.2.35

    Optimism and commitment: An elementary theory of bargaining and war

    Get PDF
    We propose an elementary theory of wars fought by fully rational contenders. Two parties play a Markov game that combines stages of bargaining with stages where one side has the ability to impose surrender on the other. Under uncertainty and incomplete information, in the unique equilibrium of the game, long confrontations occur: war arises when reality disappoints initial (rational) optimism, and it persist longer when both agents are optimists but reality proves both wrong. Bargaining proposals that are rejected initially might eventually be accepted after several periods of confrontation. We provide an explicit computation of the equilibrium, evaluating the probability of war, and its expected losses as a function of i) the costs of confrontation, ii) the asymmetry of the split imposed under surrender, and iii) the strengths of contenders at attack and defense. Changes in these parameters display non-monotonic effects

    Revista de educación

    No full text
    La Ley General de Educación de 1970 da lugar a una reforma integral del sistema educativo con el fin de democratizar la enseñanza española, ofreciendo respuestas a las nuevas necesidades. Sin embargo, la aplicación de la Ley General de Educación en la década de los setenta, tuvo algunas restricciones, ya que, había sido concebida para una época de desarrollo económico. Debido a las insuficiencias del sistema educativo y a los cambios económicos, sociales y políticos, se exige el replanteamiento global del sistema. Esto se hace a partir de los principios de la Constitución española de 1978, donde se establece que la educación cumple su función de instrumento corrector de las desigualdades sociales, y que contribuye al proceso de consolidación y desarrollo del sistema democrático. El estudio se centra en el desarrollo de las líneas generales de la reforma que las enseñanzas medias exigen con el fin de obtener una mayor formación. Para que esta nueva ordenación de las enseñanzas medias tenga éxito, se debe contemplar todo el sistema educativo desde una perspectiva global, corrigiendo carencias en los distintos niveles.Ministerio Educación CIDEBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín, 5 - 3 Planta; 28014 Madrid; Tel. +34917748000; [email protected]

    Competitive Equilibria in Economies With Multiple Divisible and Indivisible Commodities and No Money

    No full text
    A general equilibrium model is considered with multiple divisible and multiple indivisible commodities.In models with indivisibles it is always assumed that an indivisible commodity, called money, is present that is used to transfer the value of certain amounts of indivisible goods.For these economies with a finite number of divisible and indivisible goods and money and without producers it is well understood that a general equilibrium exists if the individual demands and supplies for the indivisibele goods belong to a same class of discrete convexity.In this paper we a model with multiple divisible and multiple undivisible commodities, in which none of the divisible goods may serve as money.Moreover, there are a finite number of producers owning a non-increasing returns to scale technology.One of the producesrs is assumed to have a linear production technology in order to produce divisible goods. Individual endowments being sufficienly large for production and discrete convexity guarantees the existence of a competitive equilibrium.

    Fair Allocation

    No full text
    corecore