7 research outputs found

    FLIAT, an object-relational GIS tool for flood impact assessment in Flanders, Belgium

    Get PDF
    Floods can cause damage to transportation and energy infrastructure, disrupt the delivery of services, and take a toll on public health, sometimes even causing significant loss of life. Although scientists widely stress the compelling need for resilience against extreme events under a changing climate, tools for dealing with expected hazards lag behind. Not only does the socio-economic, ecologic and cultural impact of floods need to be considered, but the potential disruption of a society with regard to priority adaptation guidelines, measures, and policy recommendations need to be considered as well. The main downfall of current impact assessment tools is the raster approach that cannot effectively handle multiple metadata of vital infrastructures, crucial buildings, and vulnerable land use (among other challenges). We have developed a powerful cross-platform flood impact assessment tool (FLIAT) that uses a vector approach linked to a relational database using open source program languages, which can perform parallel computation. As a result, FLIAT can manage multiple detailed datasets, whereby there is no loss of geometrical information. This paper describes the development of FLIAT and the performance of this tool

    Data extraction algorithm for Energy Performance Certificates (EPC) to estimate the maximum economic damage of buildings for economic impact assessment of floods in Flanders, Belgium

    Get PDF
    Floods cause major disruptions to energy supply and transportation facilities and lead to significant impacts on the society, economy, and environment. As a result, there is a compelling need for resilience and adaptation against extreme flood events under a changing climate. An accurate focal priority analysis of how societies can adapt to these changing events can provide insight into practical solutions. Besides the social, ecological, and cultural impact assessments of floods, an accurate economic impact analysis is required to define priority zones and priority measures. Unfortunately, studies show that economic impact assessments can be highly inaccurate because of the margin of error in economic value estimation of residential and industrial buildings, as they account for a large part of the total economic damage value. Therefore, tools that can accurately estimate the maximum economic damage value (or replacement value) of residential and industrial buildings are imperative. This paper outlines a methodology to estimate the maximum economic value of buildings by using a data extraction algorithm for Energy Performance Certificates (EPC), through which the replacement value can be calculated for all of the buildings in Flanders, and in addition, across Europe

    Development of a 3D dynamic flood WebGIS visualisation tool

    Get PDF
    Low elevation coastal areas are vulnerable to the effects of sea level rise and to an increase in the frequency and severity of storm surge events due to climate change. Coastal urban areas are at risk because coastal flooding causes extensive damage to energy and transportation infrastructure, disruptions to the delivery of services, devastating tolls on the public's health and, occasionally, significant loss of life. Although scientists widely stress the compelling need to mitigate and adapt to climate change, public awareness lags behind. Because WebGIS maps (web-based geographic information systems) quickly convey strong messages, condense complex information, engage people in issues of environmental change, and motivate personal actions, this paper focusses on searching the ideal flood assessment WebGIS method to encourage people to mitigate and adapt to climate change. Surveys demonstrated that 3D visualisations have an enormous added value because they are more vivid and therefore more understandable and make it easier to imagine the consequences of a flood than 2D visualisations. In this research, the WebGIS will be created using Ol3-Cesium and open layers to visualise a flood event by dynamic layers in a 2D/3D environment