1 research outputs found

    Additional file 1: of Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer’s disease

    No full text
    Table S1. Demographic and pathological data on brain samples. Figure S1. Characterization of AD brain extracts used for LTP experiments. (a) Half milliliter aliquots of mock immunodepleted (AD) and AW7 immunodepleted (ID-AD) extracts were analyzed by IP/WB. AW7 was used for IP and a combination of 2G3 and 21F12 was used for WB. To enable comparison 2 and 5 ng of Aβ1–42 peptide was also electrophoresed on the gel. IP/WB analysis allows the capture of Aβ structures under native conditions and their detection following denaturing SDS-PAGE. (b) The same samples were also analyzed by an MSD-based Aβx-42 immunoassay. Since GuHCl effectively disaggregates high molecular weight Aβ species, samples were analyzed with and without incubation in denaturant. Analysis of samples in the absence of GuHCl allows the measurement of native Aβ monomer, whereas, analysis of samples treated with GuHCl allows detection of disassembled aggregates. The AD extracts contained much larger amounts of aggregates than monomer, and both monomer and aggregates were effectively removed by AW7 immunodepletion. The experiments shown are typical of at least 3 separate experiments. Figure S2. Bath application of anti-Aβ antibodies had no significant effect on hippocampal LTP. Each data in this graph was average of at least 6 recordings. (DOCX 466 kb
    corecore